

Expansion Joints Guide

Summary Module 1

1 BOA GENERAL INFORMATION	2
2 EXPANSION JOINTS GENERAL	3
2.1 Main elements and their functions	4
2.2 The bellows and its function	4
2.2.1 The one to five-layer bellows, produced by hydraulic complete forming (Hydraulic Formed Bellows HFB)	5
2.2.2 The several to multi-ply bellows (2 to 16 layers), produced by elastomer single convolution shaping (Elastomer	6
Formed Bellows EFB)	
2.2.3 Calculating the multi-ply bellows	7
2.2.4 Criteria for problem-oriented choice of bellows	7
2.3 Unrestrained expansion joints	8
2.4 Restrained expansion joints	8
2.5 The inner sleeve (protection tube)	8
2.6 Types of connection	9
2.6.1 Expansion joint for welding in	9
2.6.2 Expansion joint with welded flange connection	g
2.6.3 Expansion joint with loose (movable) flange connection	g
2.7 Determination of movement parameters	10
2.8 Criteria for choosing the type of compensation	11
2.8.1 Natural expansion compensation	11
2.8.2 Expansion compensation with unrestrained expansion joints	11
2.8.3 Expansion compensation with restrained expansion joints	12
2.8.3.1 Expansion compensation with angular expansion joints	12
2.8.3.2 Expansion compensation with lateral expansion joints	12
2.8.3.3 Expansion compensation with pressure balanced expansion joints	12
2.9 Anchor points, pipe alignment guides, suspended holding devices	12
2.10 Nominal conditions	14
2.11 Materials	16 17
2.12 Approach in practice 2.12.1 Data requirements / Check list	17
2.12.1 Data requirements / Gneok list	17
3 QUALITY ASSURANCE	19
3.1 Approvals / Certificates	19
3.2 Tests / Laboratory	20
4 APPLICATION FIELDS	21
4.1 Diesel and gas engines	21
4.2 Aerospace	21
4.3 Power distribution	22
4.4 HVAC	22
4.5 Hydraulic engineering	22
4.6 Plant construction, general piping construction	23
4.7 Pumps and compressors	23
4.8 Gas turbines	23
5 ANNEX/ STANDARDS	24
5.1 Symbols used in pipe construction	24
5.2 Table on guide analyses and characteristic strength values	25
5.3 International standards / Comparison table	27
5.4 Conversion tables	28
5.4.1 Pressure	28
5.4.2 Other conversion tables	29
5.5 Corrosion	31
5.5.1 Technical information	31
5.5.2 Corrosion resistance table	32

2 Expansion Joints General

The main function of expansion joints in their various constructions is to compensate for movements in pipe systems, machines and equipment. The movements to be compensated are always relative motions between two parts of a system, caused by temperature differences, misalignment during installation, inertial forces or foundation lowering. Expansion joints are universally applicable in almost every industrial sector. Particularly in pipeline engineering, they allow space-saving pipe routing for transporting a variety of media such as hot water, steam, fuel, heat transfer fluids, hot gases and various types of chemical products. Another application field is the apparatus and motor engineering, where the expansion joints decouple vibrations and structure-born noise from diesel engines, turbines, pumps and compressors, preventing their transfer to the continuing lines. At the same time, expansion joints allow nearly force-and torque-free connection of pipes to sensitive fittings, appliances and equipment (e.g. to turbine nozzles). Moreover, expansion joints serve as assembly aids for pipe elements such as valves, where they are used as dismantling pieces or couplings.

Overview Expansion Joints

			Pressure			Movement		-
Туре		Design	thrust	Axial	Ang Single	ular Multi	Lat Single	eral Multi
	Non-pressure		restraint		plane	plane	plane	plane
	Non-pressure balanced internally pressurized		No	х	(X)	(X)	(X)	(X)
Axial Expan- sion Joint	Non-pressure balanced externally pressurized		No	х	(X)	(X)	(X)	(X)
	In-line pressure balanced		Yes	x				
Angular Expan-	Hinge	-	Yes		x			
sion Joint	Gimbal	- Et	Yes		x	х		
	Two tie-bars spherical	Her	Yes		x		х	х
	Two tie-bars pinned (plane)		Yes				х	
Lateral Expan- sion Joint	Three or more tie-bars		Yes				х	х
	Double hinge		Yes		x		х	
	Double gimbal	T. M	Yes		x	х	х	х
	Unrestrained One or two		No	x	x	x	x	x
Univer- sal Expan- sion	bellows	1 u h	No	X	~	~	X	X
Joint	Pressure balanced	<u>(1996)</u>	Yes	x	X With two tie- bars only		х	х
	– Applicable () – Limited use							

The table shows an overview of expansion joints types, laid out according to their main function and construction characteristics with the possible movement compensation. Particularly to be remarked: all unrestrained types, while under pressurisation, perform a pressure reaction force (= product of pressure x cross-section of expansion joint) on the piping. Therefore these pipings need to be particularly fixed and guided.

2.1 Main elements and their functions

As the above displayed overview table shows, there are expansion joints designs, depending on a variety of different compensation tasks. Usually, expansion joints have the following components:

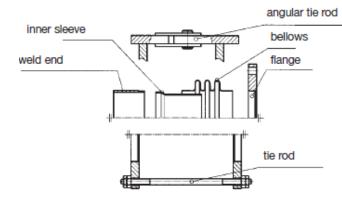
Bellows:

They are the flexible element of the expansion joint and are designed, depending on the requirements, with different numbers of corrugations and layers.

Guide sleeves:

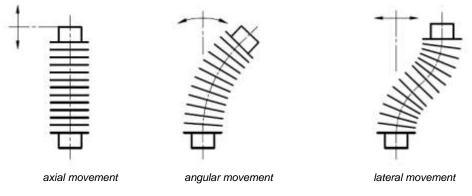
They protect the bellows against the flowing medium and reduce the flow resistance

Protective tubes, guiding tubes:


They protect the bellows against mechanical damage and, depending on the design, prevent the expansion joint from lateral deflection (buckling).

Fittings:

They make the connection to the continuing piping. Depending on the design, the following fittings are available: weld ends, ends to be soldered, flanges, threaded nipples.

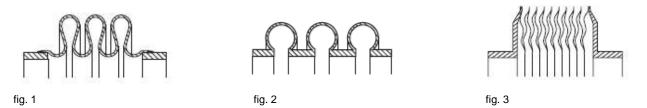

Restraint (only for lateral-, hinge or pressure balanced types):

The restraint transmits the pressure reaction force over the single or, depending on the design, multi bellows. Simultaneously the restraint determines the kinematic flexibility of the expansion joint by incorporating different types of hinge bearings, such as ball joints, single axis bearings with bolts, U-joint or gimbal bearings.

By combining the above shown main elements, depending on the compensation task, the various types and designs can be generated, which are displayed in the following standard programs of the BOA Group, by types, sizes, pressure ratings and expansion compensation.

2.2 The bellows and its function

The core element of every expansion joint is the metal bellows (*), which by its corrugation geometry and thin-walled design has a large flexibility in axial, lateral or angular direction, as well as a high pressure resistance. As a condition to be used as an expansion element, the bellows must meet the following basic requirements:


(*) Exceptions are the rubber expansion joints with their particular operating conditions

The bellows must

- withstand the operating and test conditions (pressure, temperature) of the pipe system,
- be corrosion resistant against internal and external influences, .
- be able to compensate for flexible expansions or possible oscillations, and achieve a specified life time or number of load cycles and
- have sufficient stability against buckling

Using corrugations in form of a lyre (see fig.1) is a good compromise between the contradictory requirements for high flexibility combined with high compressive resistance. They are the preferred corrugation shape for standard bellows. By changing the radii, the profile height, the number of layers and the wall thickness, their geometry may be adapted to the requirements on pressure and expansion capability.

In contrast, a toroidal corrugation profile (see fig. 2), has a high compressive resistance with reduced flexibility, whereas a membrane-shaped corrugation profile (fig. 3) has the highest flexibility, but a low compressive resistance.

Within BOA Group, all profile shapes are produced and may be supplied on request.

2.2.1 The one to five-layer bellows, produced by hydraulic complete forming (Hydraulic Formed Bellows HFB)

Traditionally, BOA BKT produces one-layer bellows, but at higher pressure and movement requirements up to five layers can be manufactured by nesting in sleeves one into the other.

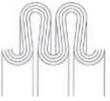
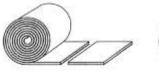



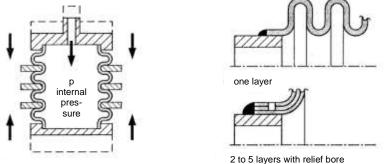
fig. 4

The bellows cylinders are made of strip material following the procedure steps shown in fig. 5: cutting, rounding and longitudinal welding.

cutting,

2 to 5 layers

longitudinal welding


depending on the required number of layers, sleeves are nested one into the other

The bellows is manufactured as shown in fig. 6, out of one or several thin-walled cylinders, nested one into the other, using the hydraulic complete forming procedure.

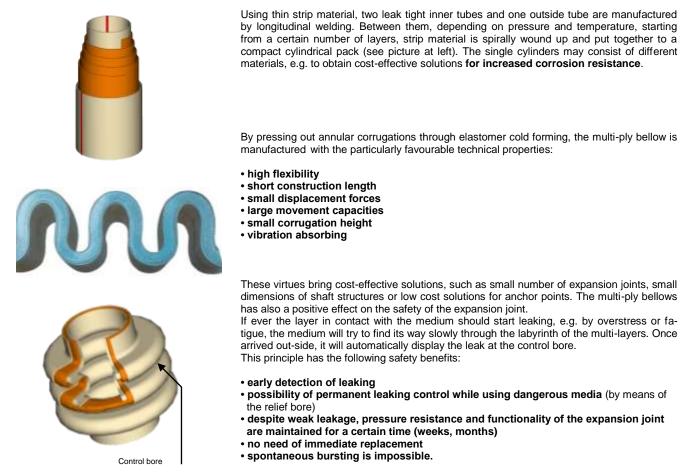

Bellows manufacture

fig. 6

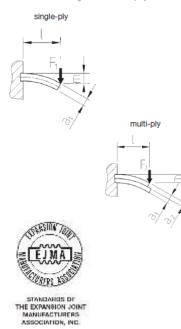
To ensure that the inner bellows layer is welded tightly to the weld end, the outer support layers of bellows consisting of more than one layer are provided with a relief bore. In this way it is possible to check the tightness of the inner layer by means of a leak test.

2.2.2 The several to multi-ply bellows (2 to 16 layers), produced by elastomer single convolution shaping (Elastomer Formed Bellows EFB)

BOA AG as the inventor of the several or multi-ply bellows, continues to evolve this procedure, manufacturing bellows made of austenitic and other high-quality materials. The number of layers of the standard products can vary from a minimum of 2 to a maximum of 16 layers.

Multi-ply bellows also show their advantages used in vibration absorbers. Thanks to the compact layer structure, friction effects arise inside the bellows pack, and as the bellows is moving, the force-deflexion-graph develops hysteresis.

• Thus, the principle of the multi-layer bellows is an excellent solid-borne sound absorber. Similar results are reached as with rubber elements, plus the advantage of higher resistance against temperature, pressure and ageing.



Properties of single-ply compared to multi-ply expansion joints

- · high plane and column stability with the same wall thickness
- · high corrosion resistance due to thicker wall thickness
- reduced vulnerability to external damage
- own repair welding may be possible at leakage

2.2.3 Calculating the multi-ply bellows

The positive effect of the very flexible multi-ply bellows compared with the single-ply expansion joints is easy to demonstrate with a simple bending bar. It is evident, that at the same bending rate and the same dimensions, with half of the bar's thickness a, the bending stress F2 is also halved, and the displacement force of the two-layer bending bar is only one quarter of the original value.

Usually, the bellows are exposed to extreme static or dynamic forces generated by internal pressure, temperature, vibrations etc. Compared to a fix pipe system, the calculation of the effects of the varying forces on a multi-ply bellow becomes very complex.

To meet the high safety requirements, engineering must be supported by a reliable and tested calculation method. BOA makes use of the results and knowledge of the group of American expansion joints manufacturers (EJMA), published since 1958. This calculation method has been proven for multi-ply expansion joints and is recognized by all international certification authorities.

2.2.4 Criteria for problem-oriented choice of bellows

The following standard programs of BOA enable the user to choose the type of bellows and expansion joint particularly suitable for the targeted application. For better understanding, the different options available in bellows technology (HFB / EFB) will be explained with an example.

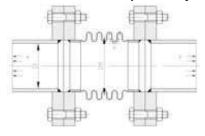
Let's first consider a **single-layer** bellows with **4 convolutions** and a wall thickness of **s = 1mm**. With a profile height of H = 28mm, the bellows is suitable for an operating pressure of $p_{adm} = 10$ bar, and has an expansion capability of $\Delta_{ax} = \pm 12$ mm at an axial spring rate of c_{ax} .

If we want to realize the **same performance** for pressure resistance and expansion capability with a **multi-layer** bellows, we already need 4 layers (each one with a wall thickness of **s** = **0.5 mm**) to achieve the same pressure resistance. However, the individual layer thickness being only half, the expansion capability per convolution doubles, so that for a movement capacity of Δ_{ax} = ±12mm **only 2 convolutions would be required**, or keeping the same number of convolutions (4), we reach now the double expansion capability Δ_{ax} = ±24mm at about half the spring rate (0.5 c_{ax}).

In the next step we further reduce the layers' wall thickness to 0.3 mm. Again, to achieve the same pressure resistance, 9 bellow layers are now required, which, at the same number of convolutions (4), triple the expansion capability to $\Delta_{ax} = \pm 36$ mm and lower the spring rate to a third.

The dependencies are summarized in the table below:

admissible working pressu	admissible working pressure p _{adm} = 10 bar, profile height H=28 mm				
layer thickness s (mm)	number of layers n	number of convolutions	expansion capability Δ_{ax}	spring rate	
		W	(mm)		
1	1	4	± 12	C _{ax}	
0,5	4	4	± 24	0,5 c _{ax}	
0,5	4	2	± 12	C _{ax}	
0,3	9	4	± 36	0,33 c _{ax}	


If the **primary compensation task is to absorb a specific thermal expansion**, regardless of the length and the displacement forces of the expansion joint, as in the case e.g. of axially compensated district heating pipelines, **a bellows of one or few layers** will sufficiently solve the compensation task.

If space conditions for installing the expansion joint are restricted, a multi-ply bellows will significantly reduce the overall length.

However, if the **connection forces or moments** on a sensitive turbine or equipment nozzle are the main argument, then these can be reduced to one third by choosing **a multi-layer bellows**, compared to the single-ply solution with equal length.

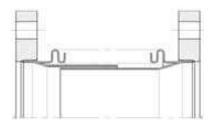
If the compensation task is to isolate or damp oscillations of small amplitude, the use of few or multi-ply bellows has a dampening effect on the upcoming forced vibration, due to the layers friction.

2.3 Unrestrained expansion joints

Expansion joints without tie rods (axial and universal), while under pressurization, act a reaction force FP (= product of overpressure p x cross section area [AB]) upon the pipe system and the anchor points.

The bellow's cross-section [AB] may be taken from the dimension tables of the expansion joints types. At high pressure rates and large nominal sizes, the reaction force increases considerably, e.g. at a pressure of 40 bar and 400 mm nominal size, the reaction force is approx. 600 kN. Therefore the anchor points have to be massive.

2.4 Restrained expansion joints



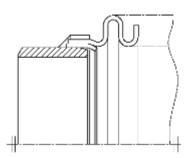
The reaction force, explained before, is taken up by a tie bar system, i.e. articulation elements or tie rods. Depending on the pipe routing and the occurring movements, the appropriate type of restrained expansion joint is chosen. Despite the restraining element, the overall length of the expansion joint remains short, thus being also advantageous for system solutions.

If high pressures or pressure impacts occur, and to avoid massive and expensive anchor point constructions, the experienced engineer will choose restrained expansion joints.

Along with taking up the reaction force and its correct transmitting into the connecting parts, the tie rods support the articulation elements, thus ensuring the motional function. Besides, very often there are additional loads and moments to transmit. It is evident, that the dimensioning of the restraining elements has to be supported by a reliable and tested calculation method. BOA engineers are using FEM, calculating with the non linear limit analysis. Their results mainly meet the values received during many practical experiments and burst pressure tests.

2.5 The inner sleeve (protection tube)

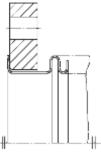
Inner sleeves protect the bellows and prevent it from being activated into vibrations, caused by the medium's high speed. The installation of an inner sleeve is recommended,


- if abrasive media are used
- if large temperature variations are expected
- to prevent the deposition of solid parts in the corrugations
- if the flow rate is higher than approx. 8 m/sec for gaseous media
- if the flow rate is higher than approx. 3 m/sec for liquids

For further instruction see "Installation and Operating Instructions"

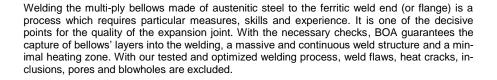

2.6 Types of connection

Depending on the application, replaceability, safety or pressure rate, usually three methods for connecting the expansion joint to the pipe system or to the unit are distinguished.



Expansion joint for welding in

2.6.1 Expansion joint for welding in


Expansion joint with welded flange connection

Expansion joint with loose (movable) flange connection

The advantages of this connection type are:

- 1. The outside dimensions of the connection are compact to the continuing piping
- 2. The leak tight weld seams (which may be examined by non destructive test methods) for the application under elevated pressure conditions or with dangerous fluids.

2.6.2 Expansion joint with welded flange connection

The advantages of this connection are rapid replaceability and the expansion joint's short overall length. Regarding the connection weld between flange and multi-ply bellows, the same high standards apply as for weld ends.

2.6.3 Expansion joint with loose (movable) flange connection

The advantages of this connection are, as with welded flanges, easy replaceability, fast assembly and the short overall length.

Furthermore, the austenitic bellows, forming a collar on both sides, allow flange rotating. In case of non-aligned hole patterns and aggressive media inside, the bellows' collar protects the flanges, so that no specific flange material is required. However, this type of flange connection is not available for all pressure levels.

2.7 Determination of movement parameters

Expansion joints compensate for various movements, caused by different sources, such as

- installation misalignment
- vibrations
- installation gap
- extension caused by pressure force
- soil subsidence
- elongation

Elongation usually causes the highest movement value.

Installation misalignment

Misalignment occurs very often during pipe installation. These imprecisions may be compensated by expansion joints, if they were already considered in the system design. In this case, the expansion joint's life time is hardly affected, because it is a one-time movement. On the other hand a complete or partial blocking of the corrugations may be caused, if short axial expansion joints are installed. The indicated movement compensation would be hindered, leading thus to early failure of the expansion joint.

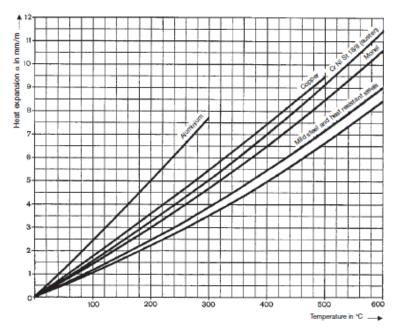
Vibrations

Vibrations of different frequency and amplitude are caused by rotating or shifting masses in installations such as pumps, piston machines, compressors etc. These vibrations not only make annoying noise, but stimulate connecting pipes to the extent of fatigue causing early failure. Thus the operating stability and economic efficiency of the installation is at risk.

Installation gap

During the installation of pipe systems, particularly when subsequent removal and replacement of individual components is necessary, an axial installation gap is essential for easy replacement of the modular elements. The so-called disassembly joint may bear a larger movement up to block position of the convolutions, as the frequency of replacement is usually low.

Extension caused by pressure force


Extensions occur in vessels and piping put under pressure force. Their values only have to be considered at larger diameters.

Soil subsidence

Expansion joints may take up larger subsidence movements, because it is a singular occurrence (no stress cycles). The expansion joint may even endure an excessive deformation of the bellows without leakage.

Elongation

Thermal expansion of different metals

Changes in the length of a piping are mainly caused by temperature variations. These changes in length have an insignificant effect in radial direction due to the pipe geometry and can be neglected, since pipe diameter is much smaller than pipe length. However, lengthwise variations of volume deserve close attention, since it can become quite significant when temperature and pipe length increase.

Each material has its own expansion coefficient which for the different types of iron and steel varies in rather narrow range. The differences become more significant for steel alloys such as heat resistant steel, stainless steel or high heat resistant metals and their alloys such as nickel, Monel, titanium, Inconel, Nimonic etc. Copper and aluminium and their alloys have even bigger expansion coefficients.

Using the specific BOA slide rule, the elongation may be determined quickly and almost exactly.

For thermoplastic lines the length elongation is more than twice as large as for steel pipes.

2.8 Criteria for choosing the type of compensation

Basically there are three types of compensation to consider:

- elastic bending of existent pipe legs (natural expansion compensation)
- expansion compensation with unrestrained expansion joints
- · expansion compensation with restrained expansion joints

Which of the three types is to be chosen also depends on the following criteria:

- extension and type of the movement to compensate for
- · pipe design
- · installation and assembly conditions
- · dimensioning of anchor points and connections with regard to forces and moments
- · total cost of the compensation (compared to costs of the anchor points)

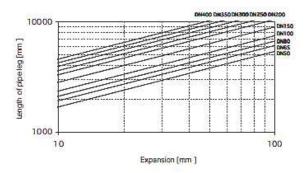
Movements

Axial and lateral expansion joints

With axial and lateral expansion joints the occurring expansion corresponds to the real compensation movement.

Angular and gimbal expansion joints

With angular and gimbal expansion joints the occurring expansion must be converted into an angular movement. This conversion is described in detail in Module 3a, angular expansion joints.


2.8.1 Natural expansion compensation

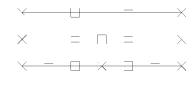
If local conditions allow the alignment of the pipe system between two anchor points in such a way that heat expansions of the pipe are compensated by the elastic reaction of the pipe elbows and legs (bending, twisting), these effects have to be exploited. However, installing extra pipe legs is not an economic solution. Natural compensation is only useful, if the pipes are able to compensate, additional to the stresses caused by internal pressure, the stresses resulting from the movement cycles, and that without early ageing. Using your own software and tables, we can advise customers whether a natural expansion compensation is possible or if expansion joints are

to be provided.

Expansion compensation of right-angled pipe legs

2.8.2 Expansion compensation with unrestrained expansion joints

The reaction force and spring rate of unrestrained expansion joints shall be taken up by the anchor points at both ends of the pipe section. In a longer pipe system, where several expansion joints are installed in series, pipe sections should be created by means of intermediate anchor points. An axial expansion joint shall be placed in each section. The anchor points at both ends of the straight pipe section shall withstand the full reaction force. The intermediate anchor points have primarily to take up frictional and displacement forces.


Axial expansion joints compensate for axial pipe elongations. Therefore, the piping shall be coaxial with the expansion joint. Small lateral movements of a few millimetres are acceptable, however, they reduce the life expectancy of the axial expansion joint, if the allowable axial movement is simultaneously fully used.

Advantages:

- · simple way of compensation
- · no change in flow direction
- minimal space requirements

Disadvantages:

- strong anchor points and good axial pipe guiding required
- · several axial expansion joints are needed for large elongations
- · many anchor points and pipe guides are needed for long pipe sections

Between two anchor points only one unrestrained expansion joint shall be installed.

2.8.3 Expansion compensation with restrained expansion joints

Compared with unrestrained expansion joints, those equipped with tie rods only need light anchor points (sufficiently firm supports). The reaction force coming from the bellows is taken up by the restraints and acts as an anchor point load. Only the spring rate of the bellows and the friction forces of the restraint act effectively on the anchor points. The anchor points shall be calculated to resist to the friction forces at the pipe guide supports and to the displacement forces of the expansion joints. Restrained expansion joints may be of the angular and lateral type. As another possibility, the use of pressure balanced expansion joints is given.

2.8.3.1 Expansion compensation with angular expansion joints

Angular (or hinged) expansion joints are used for large pipe elongations. A system of expansion joints is built of standard elements. This requires two or three expansion joints. The installation of angular expansion joints always requires a change in the direction of the piping. Therefore, they are preferably placed where a 90° bend has originally been foreseen. The elongation absorption of hinged expansion joint systems is practically unlimited. It is determined by the piping size, allowable movement's angle of the hinged expansion joints and the length of the pipe section between two angular expansion joints.

Advantages:

- · almost unlimited expansion compensation
- small load on anchor points
- modular concept application
- use of normal guides

Disadvantages:

- · change in pipe direction is always required
- · more space required compared to axial expansion joints
- two or three expansion joints required for a system

2.8.3.2 Expansion compensation with lateral expansion joints

Lateral (or swing) expansion joints, equipped with ball joints, can move in all directions within one circular plane. They are used for simultaneous or staggered movements from two directions. At sufficient length, these expansion joints can take up considerable amounts of movements. More frequent is the use of short lateral expansion joints with ball points for small elongations when the pipe layout is complex, or for stress-less connections directly before sensitive equipment, such as pumps, compressors and machines. If two ball joint expansion joints arranged at right angles, such a system takes up elongations in all three directions (lateral expansion joints possible only with 2 tie rods, observe the installation position of the tie rods). The installation of lateral expansion joints always requires a change in direction of the piping.

Advantages:

- · movement compensation in all directions in one plane
- expansion compensation in all three directions possible, if a lateral and an angular expansion joint are used (construction detail of lateral expansion joint: only with two tie rods, observe the installation position of the tie rods)
- small load on anchor points

Disadvantages:

- change in pipe direction is necessary
- more space required compared with axial expansion joints

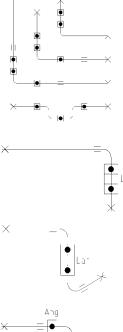
Provide a double ball joint for vacuum applications!

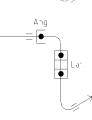
2.8.3.3 Expansion compensation with pressure balanced expansion joints

There are many types of special constructions such as pressure balanced axial expansion joints, pressure balanced angular expansion joints, a combination of axial and lateral expansion joints. There are standards covering such systems, but the expansion joints themselves are not standardized. It is recommended to consult the manufacturer in these cases, because special constructions are sometimes technically efficient, but nevertheless the most expensive solution.

Advantages:

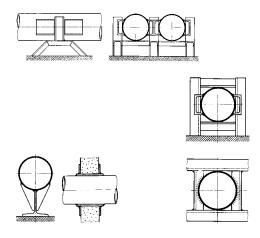
- small anchor point loads
- minimal space required
- technically efficient solution


Disadvantages:


• custom-built, therefore higher costs

2.9 Anchor points, pipe alignment guides, suspended holding devices

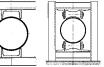
Regardless of the type of expansion joint being applied, anchors shall always be provided at each end of a pipe. When axial expansion joints are used, each bend, right angle turn or considerable pipe direction change must be anchored. Pipelines whose elongation is compensated by several expansion joints, must be divided by anchor points into as many parts as expansion joints are necessary. The location of anchors is determined on the one hand by the direction of the piping, on the other hand by local conditions. However, their capacity of providing good anchorage is essential.

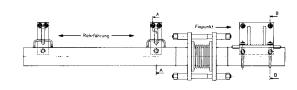


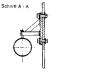
The corrugated bellow of the expansion joint tends to stretch out when subjected to internal pressure, and to contract under inner vacuum. This pressure or tensile force, the reaction force of the bellows, is transferred to the piping and has to be neutralized by the anchorage of the piping. The strength of the anchor point, and therefore basically its design, is determined by the reaction force. In this case, not the reaction force of the operating pressure, but of the test pressure is relevant, because the anchorage must absorb the reaction force of the test run, when the piping is put under pressure. However, the test pressure should not exceed 1,5 times of the operating pressure. The spring rate of the bellow must be added to the reaction force, however it usually amounts to only a small percentage of the latter. If a sufficient number of anchor points cannot be provided, restrained expansion joints such as angular, lateral or pressure balanced axial expansion joints should be used.

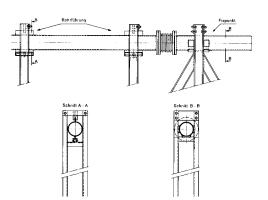
Anchor points within straight pipe sections may be of lighter structure, because they only have to take up the spring rate of the bellows and the friction forces of the guides. Whereas they must not take up the reaction force, acting only on points of change in pipeline direction, on its cross section variation or on its shutoff devices (valves, slides). If the pipe diameter is changed, the difference in reaction force between the larger and the smaller pipe cross section must be added to, or subtracted from the other forces. The design of an anchor point can be quite simple. Below some possible and often used anchor designs are displayed. Local conditions determine the choice of the most suitable type.

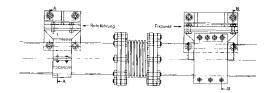
Examples of pipe guides:

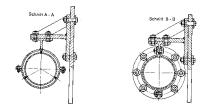

Examples of anchor points:











Examples of pipe guides and anchor points:

2.10 Nominal conditions

The expansion joints listed in the technical data sheets are classified by type, nominal size (DN), nominal pressure (PN) and movement capacity. Several factors must be considered for proper selection of an expansion joint.

Nominal size DN

The nominal size of the expansion joint to be selected is based on the existing flange or pipe dimensions.

The outside diameter of the expansion joint's weld ends corresponds to the ISO range. The exact connection dimensions, in particular the wall thickness, are listed in the technical data sheets.

The connection dimensions of expansion joints with flange connection are listed according to EN 1092.

Nominal pressure PN

For standard expansion joints, the nominal pressure (PN) is a ratio that indicates the admissible working pressure PS at nominal temperature (20 °C).

If the expansion joint is used at a temperature above the nominal temperature, its pressure load capacity is reduced by the derating factor K_P . For convenience, the derating factors K_P , depending on the temperature, are directly given in the technical data sheets.

The admissible working pressure PS of an expansion joint at working temperature TS is calculated as follows:

$$PS (TS) = PN * K_P (TS) [bar]$$

If an expansion joint must be chosen for working pressure PS and working temperature TS, then first the fictive pressure value P_e must be determined (converted to nominal temperature), which must be less than or equal to the required nominal pressure PN.

$$P_e = PS / K_P (TS) \le PN [bar]$$

Nominal movement capacity

The nominal movement capacity given in the technical data sheets indicate the displacement, the expansion joint can take up at nominal temperature out of its neutral position. For an axial expansion joint, e.g., $\pm \Delta_{ax}$ indicates that the expansion joint is able to take up 1000 full load cycles at nominal pressure and a total expansion of $2 \cdot \Delta_{ax}$ within the neutral position, compressed or stretched by Δ_{ax} . It is irrelevant whether the load cycle starts in the compressed, neutral or stretched position.

To make usable the total expansion of $2 \cdot \Delta_{ax}$ for compensation, it is necessary to pre-restrain the expansion joint by 50 % of the total displacement, i.e. by Δ_{ax} . The same applies to the lateral or angular movement compensation $(\pm \Delta_{lat} \text{ or } \pm \alpha)$.

Particularly easy to fit are the axial expansion joints of our standard program, which are able to take up their total expansion on compression without needing on-site pre-restraining.

For these expansion joints, the nominal axial expansion compensation Δ_{ax} corresponds to the total expansion on compression.

If an expansion joint is used at a temperature above the nominal temperature for expansion compensation, the movement capacity is reduced by the derating factor K_{Δ} .

The derating factors K_{Δ} (TS) are indicated on the technical data sheets as a function of temperature.

The admissible movement capacity $\pm \Delta_{adm}$ (TS) or $\pm \alpha_{adm}$ (TS) of an expansion joint at working temperature TS is calculated as follows:

 $\pm \Delta_{adm}$ (TS) = $\pm \Delta * K_{\Delta}$ (TS)

If a certain working condition needs a movement capacity of $\pm \Delta TS$ at working temperature TS, then the necessary nominal movement capacity of the expansion joint to be chosen is to be determined as follows:

Inherent resistance of the Bellows ± 30% (spring rate)

The inherent resistance (spring rate) of the bellows is a force (moment), the bellows withstand a movement.

The bellows' specific spring rate per $\pm 1 \text{ mm} (1^{\circ})$ is indicated in the technical data sheets as spring rate. For production reasons, a tolerance of $\pm 30\%$ is applicable for the values listed.

Life time

The life time (life expectancy) of an expansion joints is defined by the minimum number of full-load cycles that can be taken up until a leak caused by fatigue will appear. The maximum permissible expansion capacity is indicated on the expansion joint. It refers to 1000 full-load cycles (expansion joints conforming to EC standards: 500 full load cycles with safety factor 2).

The nominal expansion capacity given in the technical data sheets refer to a minimum life time of 1000 full-load cycles at nominal conditions.

A load cycle means the movement cycle, the bellows is running through between the two extreme positions during the application and removal of the total expansion capacity.

For example: a pipeline is brought from ambient temperature to full operating temperature, and then cooled down again. For an expansion joint, built into the pipeline, this procedure means a full load cycle.

In normal cases, a design for 1000 full-load cycles is absolutely sufficient.

If higher load cycles are required, such as e.g. for industrial plants with several operating intervals per day, the expansion capacity must be reduced by the load cycle factor K_L (see table).

Load cycle factor KL

Load cycles	Load cycle factor]
Nadm	KL	
1'000	1.00	
2'000	0.82	
3'000	0.73	
5'000	0.63	
10'000	0.51	
30'000	0.37	
50'000	0.32	
100'000	0.26	
200'000	0.22	16 (4000 (NL) ^{0,29}
1'000'000	0.14	$K_{L} = (1000 / N_{adm})^{0,29}$
25'000'000	0.05	

Life-reducing additional effects such as corrosion, impact stress caused by explosions, water hammer or thermal shocks, resonances due to flow-induced or mechanical influences can not be calculated and are therefore inadmissible.

If during operation, in addition to the static inner pressure, dynamic pressure variations occur, they will reduce life time. If the pressure variations are on a low level within the nominal pressure range, the influence on the life time is small and in most cases negligible. If in individual cases there is uncertainty regarding the rating of the impact, please inquire.

Load spectrum

If an expansion joint shall be designed for different load cases, the degree of fatigue (D_i) of each load spectrum must be linearly accumulated

$$\mathsf{D}=\Sigma \ \mathsf{D}_i=\Sigma \ (\mathsf{n}_i/\mathsf{N}_i) \leq 1$$

where n_i means the necessary and N_i the allowable number of cycles of each load case.

Example:

Load case 1 with $n_1 = 500$ load cycles at 100 % nominal expansion capacity with $N_{1adm} = 1000$. Load case 2 with $n_2 = 10\ 000$ load cycles at 30 % nominal expansion capacity ($K_L = 0.3$) with

$$N_{2adm} = 1000 / (K_L^{3,45}) = 63670$$

resulting in an overall fatigue degree of

 $D = n_1 / N_{1adm} + n_2 / N_{2adm} = 0,66 < 1$

which, with 66% capacity, constitutes a permissible load spectrum.

2.11 Materials

The materials used for metal bellows, whether single-ply or multi-ply must meet various conditions. These are:

Weldability

It must be fundamentally ensured. The longitudinal weld seams must meet the same conditions as the base material.

• Ductility

It is a prerequisite for the production of cold-formed bellows, however sufficient residual elongation at rupture must be ensured.

Mechanical strength properties

High mechanical strength is a prerequisite for pressure resistance. Simultaneously the elastic range is extended.

Technological properties

These include the strength properties under alternating flexural stress for expansion joints. They are not only determined by the alloying components, but also by surface conditions, by the grain size and by the metallurgic microstructure.

Corrosion resistance

There is no corrosion allowance for expansion joint bellows. It would have a negative influence on the bellows' expansion properties. Therefore, only materials being corrosion resistant against the concerned medium are possible.

Temperature properties

This means the materials' resistance to heat or cold and their long-term behavior. Almost all of austenitic chrome-nickel steels are tough down to -200°C and usually meet all requirements up to 550°C.

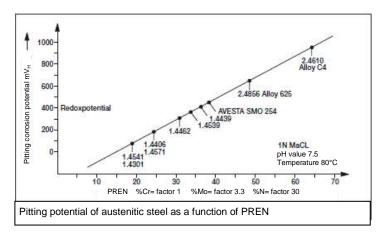
For applications working at temperatures above approx. 550°C, special heat resistant materials are used.

Mainly stainless steels fulfil the above mentioned criteria. The general term for these materials is "stainless steel". They generally contain more than 12% chromium (Cr) and are resistant to oxidizing agents attack.

Higher chromium contents and other alloying elements such as nickel (Ni), molybdenum (Mo) and nitrogen (N) improve the corrosion resistance.

Also the mechanical and technological properties are strongly influenced by these or other additives. Containing at least 8% nickel, the "stainless steel" becomes austenitic. These steels are therefore often referred to as, e.g., 18/8, 18/10, or as austenitic chrome-nickel steels.

With the formation of a passive layer and the presence of oxygen, "stainless steel" gets its anti-corrosive property.

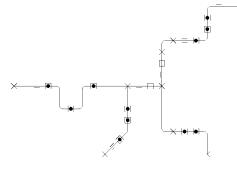

Standard materials for bellows are

Material n°	Short form	AISI
	DIN 17006	(USA)
1.4541	X6 Cr Ni Ti 18 10	321
1.4571	X6 Cr Ni Mo Ti 17 12 2	316 Ti

These are austenitic, titanium-stabilized steels with a wide range of application areas.

For more aggressive corrosion conditions higher alloyed steels or nickel-based materials shall be used.

Pitting resistance equivalent number diagram (PREN)


The diagram allows estimating the increasing corrosion resistance in aqueous media. The pitting corrosion potential in this case represents a measure for the resistance of the material against pitting as a function of the alloy components' PREN, with the elements chromium, molybdenum and nitrogen having a significant effect (see pitting factors).

The material 1.4439, for example, due to its content of molybdenum and nitrogen (4-5% Mo, 0.1-0.2% N) has an about twice as high PREN relative to the material 1.4541, and is therefore much more resistant to pitting.

2.12 Approach in practice

For a given routing, see the example to the right, initially anchor points must be set where a movement of the line is undesirable, namely at the branch points. In the next step those line segments are to be considered, where the natural legs are able to absorb parts of the pipeline expansion. These line segments must be limited by anchor points. For the other line parts, expansion joints must be provided to take up expansion.

Two questions are crucial for the decision, whether axial or hinged expansion joints are to be chosen: The line's routing and the possibility of taking up axial forces.

If it is a pipe system with **short, straight** sections and stretching movements to about 80 mm, i.e. a system with many changes of direction and junctions, an **axial** expansion joint is recommended. In **long straight** lines with stretching movements higher than 80 mm, **hinged** expansion joints are rather used. If the on-site conditions **allow strong anchor points** and placing **enough guides**, then the choice of **axial** expansion joint is correct. Otherwise, especially in pipes of **large cross-section** and at **high pressure ratios**, the **hinged** expansion joint is also a good solution, where small stretching movements occur. Artificially arranged pipe legs are not economical for space and cost reasons. It is quite possible to compensate for expansion within a piping system using various methods. To each expansion joint, however, a defined task must be assigned, i.e. the section of line to be compensated by it must be limited by two anchor points.

The economically most advantageous solution will be found, taking steps in this order when solving problems of compensation in pipelines. Early collaboration with the manufacturer however will always pay off.

2.12.1 Data requirements / Check list

Please ask for our technical advice if planning CE-marked expansion joints. You may prepare the necessary information for the expansion joint design with the help of this check list. Please add, if possible, an installation sketch and/or an isometric drawing of the pipe system. Make a copy of the following list or download it from our website www.boagroup.com.

Company:				
Address:				
Inquiry n°:	Person in c	charge:		-
Quantity units	DN	_ mm		
Expansion joint type: □ axial □ low pressure	□ lateral □ vibration absorber	□ universal □ other	□ angular	
Bellows material: exterior ply: intermediate ply: interior ply:	□ 1.4541 □ 1.4541 □ 1.4541	□ 1.4404 □ 1.4404 □ 1.4404	□ 1.4571 □ 1.4571 □ 1.4571	0 0
Inner sleeve: material:	□ yes □ 1.4541	□ no □ 1.4404	□ 1.4571	۵
Fittings: lose flange: welded flange: weld ends: materials 1 st side: materials 2 nd side:	1st side □ □ □ □ 1.4541 □ 1.4 □ 1.4541 □ 1.4		□ carbon steel □ carbon steel	D
Movement:	 axial lateral angular vibrations 	± mm ± mm ± ° ± mm		
Cycles :	□ 1000 □ 500 (standard prod □	lucts and PED 97/23/E	C with CE-marking)

BOA Check list: Expansion joints

Operating conditions:	□ PED 97/23/EC □ Piping □ Container	
Piping:	Type of fluid: group 1: dangerous gaseou group 2: innocuous gaseou	
Container: required customer's indica container, category:	tions:	
fluid type:		
Inspection authority:		
Max. operating pressure PS: Min. operating pressure PS:	bar bar (if also used in v	acuum)
Max. operating temperature TS: Min. operating temperature TS:	°C °C (if also used belo	w 0°C)
Tests:	□ standard □ PED 97/23/E □ special test	C
Inspection certificates: EN 10204-2.2 EN 10204 Conformity declaration according to Conformity certificate issued by the	Pressure Equipment Directive 9	
Marking:	□ standard □ EN 1038 □ according to PED 97/23/EC	30
Packing:	□ standard □ special	□ customer's indication
Various:	□ transportation fixing	□
Issued by:		
Place / date:		
Signature:		

Schema / sketch:

3 Quality Assurance

3.1 Approvals / Certificates

BOA expansion joints are designed, calculated, manufactured and tested following latest professional and state of the art standards. Regular inspections by accredited authorities for enterprise certification confirm the efficient and professional continuity of BOA process management.

Company approvals

EN 9100 ISO 9001 ISO 14001 ISO TS 16949 Euro-Qualiflex ISO 3834-2 DIN EN 15085-2

Quality Management for Aerospace applications Quality Management **Environment Management Quality Management** Quality Management System Certification as welding company Welding of Railway vehicles and components

PED Conformity Pressure Equipment Directive PED 97/23/EC (and SR 819.121) authorized for CE marking

Swiss Association for Technical Inspections Regulation 201 and 501

KTA 1401

Product approvals

To cover the particular market orientations, the necessary product type approvals could be organised at accredited certification authorities (examples below).

Det Norske Veritas

Germanischer Lloyd

Lloyd's Register

German Association for Gas and Water

Swiss Association for Gas and Water

3.2 Tests / Laboratory

BOA expansion joints may be subject to various quality tests and inspections. The scope of the testing program follows the requirements and wishes of the customer or the design and production standards, as well as the inspection authority's conditions.

Product quality however is a matter of production standards and not of the subsequent tests. Those tests only confirm the rated required quality level. Therefore our production methods are generally based on a high quality level. Additional tests should be required only where the application imperatively demands it. If in a particular case design evidence is requested, the requirements must be clearly specified for a review of the permissible operating data in our factory.

Non-destructive test methods

- TP water pressure test
- LT leak-tightness test with air or nitrogen under water
- LT leak-tightness test with air and foaming agents at the welds (soap bubble test)
- Differential pressure test with air
- RT X-ray test
- MP magnetic particle crack test
- PT dye penetration test
- LT helium leakage test (<1x10⁻⁹ mbar l/s)
- US ultrasound test
- VT visual test
- Hardness test

Destructive test methods

- mechanical strength test
- cupping test
- metallographic investigations
- spectroscopic test
- movement test (endurance test under pressure)
- vibration test
- burst pressure test

Our VT & PT test staff is certified according to EN473 and ASME.

Tests and laboratory

Compared with other leak test methods, the helium test permits detection of the smallest measurable leakage rate so far. Depending on the size of the specimen, it is possible to detect even a leak up to 10⁻⁹mbar l/s. Using a special device, the expansion joint is sealed on both sides and then pumped out to a vacuum of 10⁻²mbar. The weld seams are blown with helium on the outside. The mass spectrometer will instantly register any leak and the leak rate may be read from the measuring instrument. The leak will also be indicated by an acoustic signal.

Movement test to determine the stress cycles endured.

Macro cross section of an inner welding seam

Helium leak test

4 Application Fields

In almost every technical-oriented industrial area expansion joints are used to ensure the operating stability of the installations. Using flexible, metallic expansion joints in today's installation and plant construction is not only technically necessary, but also important to meet the industry's general demands for:

improved profitability

- system compatibility
- smooth operating
- reduced plant sizeeasy installation
- safety in case of incidents

BOA expansion joints meet all these requirements. Below some of the application fields are listed, where BOA expansion joints mainly are used. Nevertheless, our experienced team will be happy to develop, together with your engineers, new applications in all areas where flexible pipe elements or connections are needed. Please submit your problem – and we will suggest our solution as we have been doing for more than hundred years.

4.1 Diesel and gas engines

BOA has been supplying to leading diesel engine manufacturers expansion joints in exhaust lines between outlet valve and turbocharger. Through continuous development of our products in this area, we are now able to design and supply complete exhaust systems. BOA exhaust systems are now in use worldwide and have the following customer benefits:

- one contact person, and therefore less suppliers
- compact construction
- considerable cost savings thanks to quick mounting and 50% less weight
- optimal and interactive design thanks to state of the art engineering tools with 3D-CAD and ANSIS-FE calculation program
- 100% system tightness because of less intersections
- efficient benchmarking at BOA

Exhaust line modular assembly system 12/18/20

In addition to the complete exhaust systems, we also construct special expansion joints for diesel and gas engine manufacturers, designed according to customer's requirements:

Expansion joint with V-clamp flanges

Expansion joint with special flanges

Expansion joint with bent tubes

4.2 Aerospace

All experiences made over decades and in different areas needing sophisticated flexible elements were successfully implemented into aerospace applications by BOA. The multi-ply expansion joint in this highly demanding application field has the following advantages:

- low weight thanks to short construction length, small displacement rates and special welding connections
- BOA's high level welding competence allows using the most different materials, particularly required in this exigent sector
- effective vibration absorption

Thanks to the high quality standards, our own test laboratory and the latest calculations modules, BOA is today able to approach successfully the solution of your problem. BOA is certified according to EN 9100.

Vibration decoupling unit for helicopters

4.3 Power distribution

Through many years of collaboration with the leading manufacturers of high voltage SF6 installations, BOA has developed different types and procedures for this special market. Customers take profit from this long experience as follows:

- worldwide certification according to GIS/GIL standards
- cost reduction thanks to the connection of the austenitic bellows with aluminium flanges
- no subsequent cleaning due to manufacturing according to SF6 cleanness directives

Axial expansion joint with aluminium flanges

Small (sanitary) expansion joint Type Za

Vibration absorber Type Alpha-C

Pressure balanced axial expansion joint for high voltage SF6 installations

4.4 HVAC

The compensation of dilatations in central heating pipe systems is not only a problem for industrial plants and large public buildings, but also in the private construction sector. The rather long pipelines generate dilatations that can not quite simply be compensated by deviating the piping. In shorter main pipe lines axial expansion joints are used. In long linear main pipe lines hinged and angular expansion joints are needed. The BOA standard expansion joints program meets usually the requirements of the heating and ventilation sector.

Axial expansion joint Type W

Angular expansion joint Type AW

4.5 Hydraulic engineering

In this sector mostly BOA disassembly joints are used. Compared with standard demounting joints, BOA units have the following advantages:

- 50% installation time reduction
- quick availability of the plant by exploiting the spring rate of the bellows
- 100% tightness because no rubber elements are used (no ageing)
- economic execution using parts in contact with the medium made of non-corrosive austenitic material
- compensation of installation misalignment without tightness problems

The successful use of BOA disassembly joints during many years proves the advantages mentioned above.

Water supply, City of Zurich, Switzerland Fresh water piping, chemical plant, Germany

4.6 Plant construction, general piping construction

There is hardly another application field needing more expansion joints than plant construction or general piping construction. BOA expansion joints are successfully installed e.g. in chemical plants, thermal power plants, petrochemical plants and district heating power plants.

The requirements of plant construction are mostly fulfilled by the BOA standard expansion joints program. As a special service for the pipe system engineer, BOA may offer stress analysis data generated by the "Caesar II" program. This helps optimizing construction costs and trouble-free operating is ensured.

Lateral and angular expansion joints

4.7 Pumps and compressors

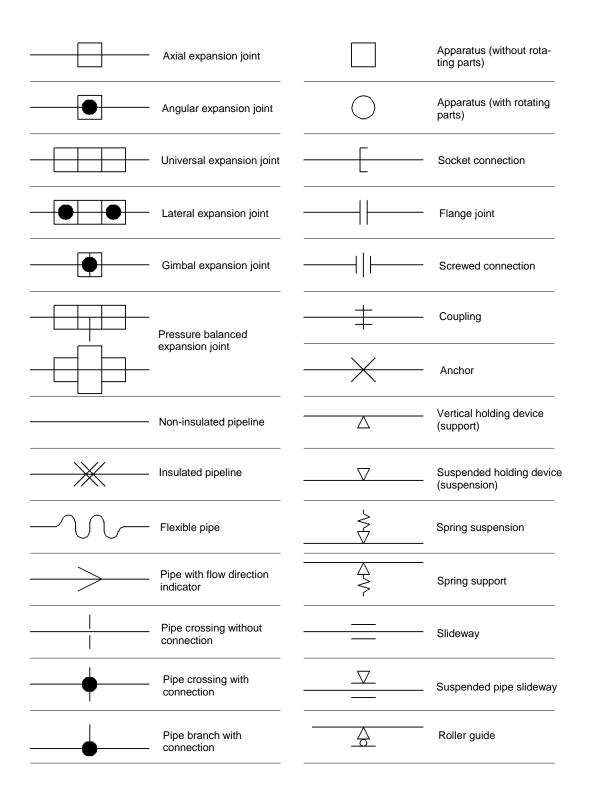
Oscillations/vibrations caused by pumps, compressors, burners, piping equipment etc. and subsequently transmitted to the pipe system, not only make annoying noise, they also stress enormously the materials exposed to the vibrations. Therefore in this application field mostly BOA vibration absorbers (made of metal or rubber) are used. Our vast standard program of metal and rubber vibration absorbers covers almost all application fields of pumps and compressors.

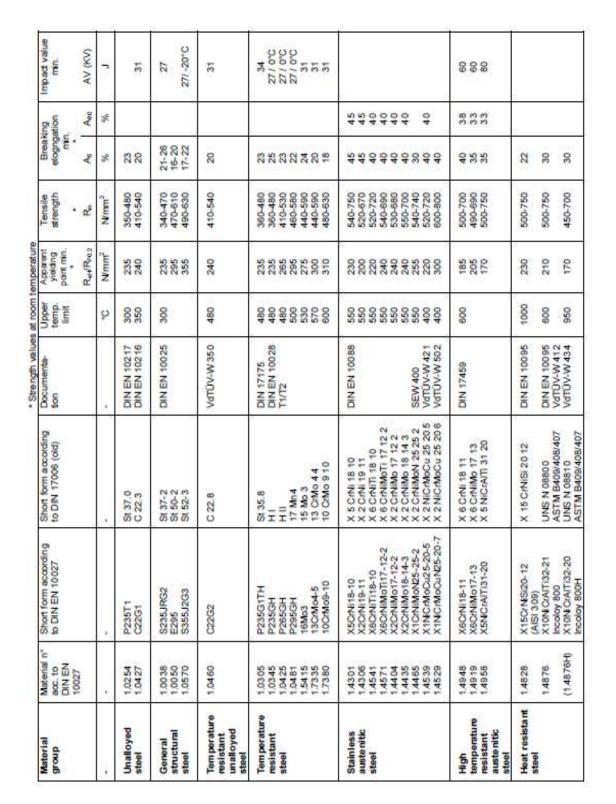
Rubber and metal vibration absorbers

Pump station with vibration absorbers

4.8 Gas turbines

For use in gas turbines, particularly pressure balanced expansion joints are used for not exceeding the allowable stresses in the transition piece between the pipeline and the aggregate. Also restrained (lateral/ angular) expansion joints are used between turbine and condenser.

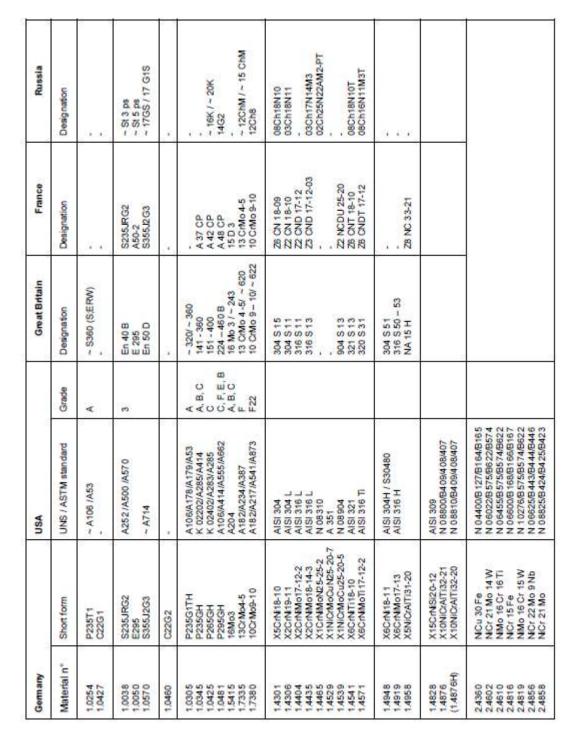

Pressure balanced expansion joints



BOA

5 Annex/ Standards

5.1 Symbols used in pipe construction



5.2 Table on guide analyses and characteristic strength values

Material group	Material n° acc. to DIN EN 10027	Short form according to DIN EN 10027	Short form according to DIN 17006 (old)	Documenta- tion	Upper temp. limit	Apparent yieding point min. Rev/Ress	strength R.	Breaking elogngation min. As A ₈	Ano	Impact value min. AV (KV)
	.*.		÷		°C	Nimm?	Nmm ²	%	*	
Nickel-based	2,4360	NICu 30 Fe	UNS N 04400	DIN 17750	425	195	≤485	35	5	80/ 20°C
alloys	2,4602	NICr 21 Mo 14 W	UNS N 06022	2027M-A010A	600	310	2690	45		150/ 20°C
	2.46.05	NICr 23 Mo 16 AI	ASIM 85/5/622/5/4 UNS N 06059	V01UV-W4/9	450	340	≥ 690	40		2251 20°C
	2,4610	Alloy 59 NIMo 16 Cr 16 Ti	ASTM 8575/574/622 UNS N 06455	VdTUV-W505 DIN 17750	400	305	≥700	35		96 / 20°C
	2.4816	NICr15 Fe	ASI M 85/5/5/4/6/22 UNS N 06600	DIN EN 10095	450	200	550-750	30		150/ 20°C
	2.4819	NIMO 16 Cr 15 W	UNS N 10276	DIN 17750	800	310	≥750	30		
	2.4856	NICr 22 Mo 9 Nb	UNS N 06625	DIN EN 10095	600	410	≥ 8 00	30		100/ 20°C
	2,4858	Alloy 625 NICr 21 Mo Alloy 825	ASTM B443/445/444 UNS N 08825 ASTM B424/425/423	VGIUV-W499 DIN EN 17750 VdTUV-W432	450	225	550-750	30		80 / 20°C
Pure nickel	2.4068	LC-N 99.2	UNS N 02201 ASTM B162/160/161	DIN EN 17750 VdTUV-W345	800	80	340-450	40		
Copper	2.0090	SF-Cu		DIN 17670	250	45	2200	42		
Copper tin alloys	2.1020 2.1030	CuSn6 (Bronze) CuSn8	UNS - C 51900 UNS C 52100	DIN 17670 DIN 17670	250 250	300 53.00	350-410 370-450	55 60		
Copper zinc alloys	2.0250 2.0321	CuZn20 CuZn37 (Messing)	UNS C 24000 UNS C 27200	DIN 17670 DIN 17670		s150 s180	270-320 300-370	48 48		
Copper beryllium alloys	2.1247	CuBe2		DIN 17670		\$250	390-520	35		
Aluminium	3.0255	AI 99.5		DIN 1712	a3	332	65-95	40	-	
Aluminium forging alloys	3.3535 3.2315	AIMg 3 AIMgSi 1		DIN 1725 DIN 1725	150	80 585	190-230 ≤150	20 18		
Titanium	3.7025	μ.		DIN 17850 VdTUV-W230	250	180	290-410	30		62
Tantalum	. 5	Тв		VdTUV-W382	250	150	> 225	35	5	

5.3 International standards / Comparison table

5.4 Conversion tables

5.4.1 Pressure

		Pressure un	its used in vacu	uum engineerin	g
	mbar	Pa (Nm ⁻²)	dyn cm ⁻² (µb)	Torr (mm Hg)	micron (µ)
mbar	1	100	1000	0.75	750
Pa (Nm ⁻²)	1 · 10 ⁻²	1	10	7.5 · 10 ⁻³	7.5
dyn cm⁻² (µb)	1 · 10 ⁻³	0.1	1	7.5 · 10 ⁻⁴	0.75
Torr (mm Hg)	1.33	$1.33 \cdot 10^{2}$	1.33 · 10 ³	1	1000
micron (µ)	1.33 · 10 ⁻³	1.33 · 10 ⁻¹	1.33	1 · 10 ⁻³	1
bar	1 · 10 ³	1 · 10 ⁵	1 · 10 ⁶	750	7.5 · 10⁵
atm	1013	1.01 · 10 ⁵	1.06 · 10 ⁶	760	7.6 · 10⁵
at (kp cm ⁻²)	981	9.81 · 10 ⁴	9.81 · 10 ⁵	735.6	7.36 · 10⁵
mm WS (kp m ⁻²)	9.81 · 10 ⁻²	9.81	98.1	7.36 · 10 ⁻²	73.6
psi	68.9	$6.89 \cdot 10^{3}$	$6.89 \cdot 10^4$	51.71	5.17 · 10 ⁴

		Ge	eneral pressure	e units	
	bar	atm	at (kp cm ⁻²)	mm WS (kp m⁻²)	psi
mbar	1 · 10 ⁻³	9.87 · 10 ⁻⁴	1.02 · 10 ⁻³	10.2	1.45 · 10 ⁻²
Pa (Nm ⁻²)	1 · 10⁻⁵	9.87 · 10 ⁻⁶	1.02 · 10 ⁻⁵	0.102	1.45 · 10 ⁻⁴
dyn cm⁻² (µb)	1 · 10 ⁻⁶	9.87 · 10 ⁻⁷	1.02 · 10 ⁻⁶	1.02 · 10 ⁻²	1.45 · 10 ⁻⁵
Torr (mm Hg)	1.33 · 10 ⁻³	1.32 · 10 ⁻³	1.36 · 10 ⁻³	13.6	1.93 · 10 ⁻²
micron (µ)	1.33 · 10 ⁻⁶	1.32 · 10 ⁻⁶	1.36 · 10 ⁻⁶	1.36 · 10 ⁻²	1.93 · 10⁻⁵
bar	1	0.987	1.02	$1.02 \cdot 10^{4}$	14.5
atm	1.013	1	1.03	$1.03 \cdot 10^4$	14.7
at (kp cm ⁻²)	0.981	0.968	1	$1 \cdot 10^4$	14.22
mm WS (kp m ⁻²)	9.81 · 10 ⁻⁵	9.68 · 10 ⁻⁵	1 · 10 ⁻⁴	1	1.42 ⋅ 10 ⁻³
psi	6.89 · 10 ⁻²	6.8 · 10 ⁻²	7.02 · 10 ⁻²	702	1

1 kp	9.81 N	
1 at	0.981 bar	
1 kpm	9.81 Nm	
1 kp /mm ²	9.81 N /mm ²	
1 Mpa	1 · 10 ⁶ Pa	= 10 bar
1 bar	1 · 10⁵ Pa	= 100 kPA

0.1 N /mm ²	14.5038 lb /inch ²
1 kp / cm ²	14.2233 lb /inch ²
1 Pascal	$14.5038 \cdot 10^{-5} \text{ lb /inch}^2$
1 kPascal	$14.5038 \cdot 10^{-2} \text{ lb /inch}^2$
1 Millipascal	$14.5038 \cdot 10^{-8} \text{ lb /inch}^2$
1 bar	14.5038 lb /inch ²

5.4.2 Other conversion tables

Flow rate

	Conversion o	of flow rate units			
	mbar I s ⁻¹	Pa m³ s⁻¹	Torr I s ⁻¹	atm cm ³ s ⁻¹	lusec
mbar I s ⁻¹	1	1 · 10 ⁻¹	7.5 · 10 ⁻¹	9.87 · 10 ⁻¹	$7.5 \cdot 10^{2}$
Pa m ³ s ⁻¹	10	1	7.5	9.87	7.5 · 10 ³
Torr I s ⁻¹	1.33	1.33 · 10 ⁻¹	1	1.32	1 · 10 ³
atm cm ³ s ⁻¹	1.01	1.01 · 10 ⁻¹	7.6 · 10 ⁻¹	1	7.6 · 10 ²
lusec	1.33 · 10 ⁻³	$1.33 \cdot 10^{-4}$	1 · 10 ⁻³	1.32 · 10 ⁻³	1

Temperature

	°C	°F	°K
°C	1	⁵/ ₉ (°F-32)	K-273.15
°F	⁹ / ₅ °C+32	1	⁹ /₅K-459.67
°K	°C+273.15	⁵/ ₉ (°F+459.67)	1

Length

	mm	m	inch	feet
mm	1	0.001	0.03937	0.00328
m	1000	1	39.3701	3.2808
inch	25.4	0.0254	1	0.0833
feet	304.8	0.3048	12	1

Surface

	mm²	m²	inch ²	feet ²
mm²	1	1 · 10 ⁻⁶	0.00155	1.0764 · 10 ⁻⁵
m²	1 · 10 ⁶	1	1550	10.7639
inch ²	645.16	6.452 · 10 ⁻⁴	1	6.944 · 10 ⁻³
feet ²	92903	0.092903	144	1

Volume

	mm³	cm ³	m³	inch ³	feet ³
mm³	1	0.001	1 · 10 ⁻⁹	6.1 · 10 ⁻⁵	3.531 · 10 ⁻⁸
cm ³	1000	1	1 · 10 ⁻⁶	0.061	3.531 · 10 ⁻⁵
m ³	1 · 10 ⁹	1 · 10 ⁶	1	61023.7	35.3147
inch ³	16389	16.387	1.6387 · 10 ⁻⁵	1	5.787· 10 ⁻⁴
feet ³	$2.832 \cdot 10^{7}$	$2.832 \cdot 10^4$	0.0283169	1728	1

Weight

	kg	pound
kg	1	2.20462
pound	0.453592	1

Force

	kp	N	Dyn	lbf
kp	1	9.80665	980665	2.20462
Ν	0.101972	1	1 · 10⁵	0.224809
Dyn	1.01972 · 10 ⁻⁶	1 · 10 ⁻⁵	1	2.24809 · 10 ⁻⁶
lbf	0.453592	4.44822	444822	1

Density

	g/m³	kg/m³	lb/inch ³	lb/ft ³
g/m³	1	0.001	3.61273 · 10 ⁻⁸	6.2428 · 10 ⁻⁵
kg/m ³	1000	1	3.61273 · 10 ⁻⁵	0.062428
lb/inch ³	2.76799 · 10 ⁷	27679.9	1	1728
lb/ft ³	16018.5	16.0185	$578.704 \cdot 10^{-6}$	1

Moments

	Nm	kp⋅m	lbf · ft	lbf · inch
Nm	1	0.101972	0.737561	8.85073
kp ⋅ m	9.80665	1	7.233	86.796
lbf ⋅ ft	1.35582	0.138255	1	12
lbf · inch	0.112985	0.0115213	0.08333	1

Spring characteristics

	N/mm	kg/mm	lb/inch
N/mm	1	0.101972	5.7101
kg/mm	10.1972	1	55.991
lb/inch	0.1751	0.01786	1

Acceleration

	m/s²	ft/s²	inch/s ²
m/s ²	1	3.28084	39.3701
ft/s ²	0.3048	1	12
inch/s ²	0.0254	0.083333	1

5.5 Corrosion

5.5.1 Technical information

All information, data and tables are based on information and documentation provided by the raw materials manufacturer or our many years of experience in the field. They do not claim to be exhaustive and are expressly recommendations for which no liability can be accepted. The users of our products are recommended to perform their own tests in case of uncertainties for the intended use.

Among other things, it should be noted that all data concerning chemicals are based on analytically pure substances and never on mixtures of media. All relevant conditions must be observed.

Often the chemical behaviour of the metal hose or metal bellows material depends on the upstream tube material. All surfaces exposed to the medium must be taken into account, e.g. if there is corrosion tendency, but the surface likely to corrode is very small, then the corrosion attack can very quickly go into depth.

Layers, deposits, ferritic filings, etc., can both inhibit corrosion (e.g. thick layers) as well as stimulate corrosion (e.g. deposits enriched with chlorides). Ferritic filings can even act as a real corrosion trigger.

Any legal claim based on the information in this document may be derived, either express or implied.

Information on the following corrosion table

The corrosion rate is expressed as a weight loss per unit of surface and time, e.g. g/mm²h or as a reduction in thickness per unit of time, e.g. mm/year. The corrosion rate is used for laboratory tests, whereas the thickness reduction is more useful for practical assessments.

In the tables on the following pages, the corrosion rate or corrosion behaviour of the various materials is classified into resistance levels from 0 to 3, based on an even corrosive attack. The meaning of the levels is given in the table below:

Resistance level	Thickness reduction mm/year	Resistance
0	<u><</u> 0.11	Completely resistant under normal operating conditions.
1	>0.11 <u><</u> 1.1	Resistant in many cases under normal operating conditions, but should only be used if other specific material properties do not allow the use of a level 0 material.
2	>1.1 <u><</u> 11.0	Moderate resistance. Shall only be used in exceptional cases.
3	>11	Not resistant. Use by no means possible.

Meaning of the abbreviations used in the tables

L	=	risk of pitting corrosion
S	=	risk of stress crack corrosion
Schm	=	molten, melts
Konz	=	concentrated substance
SP	=	boiling (boiling point)
tr	=	dry (anhydrous)
fe	=	moist
wh	=	contains water
wL	=	aqueous solution
ges	=	saturated
kg	=	cold saturated
hg	=	hat saturated
> 50	=	higher than 50
<u><</u> 50	=	smaller than or equal to 50
<u><</u> 0.1	=	smaller than or equal to 0.1
()	=	divergent literature information or uncertain values

Information on types of corrosion

Pitting corrosion

Pitting is a special type of corrosion in electrolytes containing halogen. The risk of pitting depends on several factors.

The pitting tendency increases with

- increasing concentration of chloride ions
- increasing temperature

- increasing electro-chemical potential of the steel in the electrolytes concerned

The pitting tendency is reduced by

- adding molybdenum (increasing contents of molybdenum in the steel reduces the risk of pitting, which means Mo contents between 2% and

about 5%) - higher chromium contents. The higher the chromium content (>20%), the more effective even a small quantity of Mo can be.

Pitting may be prevented by

- reduction of the electro-chemical potential in the electrolyte concerned, e.g. by cathodic protection.

Stress corrosion cracking

Stress corrosion cracking is one of the corrosion type needing several factors simultaneously to be triggered:

- a specific corrosion agent, e.g. chlorides or alkaline media
- critical system parameters (temperature, concentration, limit stress)
- a material susceptible to stress corrosion cracking
- static and/or dynamic mechanical tensile load

Stress corrosion cracking is one of the most unpleasant forms of corrosion, because it usually leads abruptly and very quickly to crack damage in components of any kind. Depending on alloy structure and corrosive attack, as a typical phenomenon cracks appear in intercrystalline or transcrystalline form, amorphous and usually ramified. Often there is a forced rupture of the component at the end of the crack. Stress corrosion cracking may be triggered by pitting corrosion, always starting from a locally active weak spot. Stress corrosion cracking can identically proceed in non-ferrous metals as in austenitic materials.

5.5.2 Corrosion resistance table

Medium		Concentration %	Temperature (°C)	unlalloyed steels	18/8-Steel	18/8+Mo-Steel	Nickel	Monel 400 2.4360	Inconel 600 2.4816	Incoloy 825 2.4858	Hastelloy C 2.4819	Copper	Tombak	Bronce	Titaniuim	Aluminium
Acetanilide (Antifebrin)			<114													0
Acetate			20									0	0	0		0
Acetate dehydrate		100 100 98 99	20 SP <54 <40	1	1	0	0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 2	1 3	1 2		0 0
Acetic anhydride		alle 100 100 100	20 60 100 SP	1 3 3 3	0 0 0 0	0 0 0 0	0 0 0 1	1	1	0	0	0 1 2	3	0 1 2	0 0 0	0 1
Acetone		100 100 all	20 SP <sp< td=""><td>1 1 1</td><td>0 OL OL</td><td>0 0L 0L</td><td>0 0 0</td><td>0 1 1</td><td>0 0 0</td><td>0 0 0</td><td>0 0 0</td><td>0 1</td><td>0 1</td><td>0 1</td><td>0 0</td><td>0 0</td></sp<>	1 1 1	0 OL OL	0 0L 0L	0 0 0	0 1 1	0 0 0	0 0 0	0 0 0	0 1	0 1	0 1	0 0	0 0
Acetylene	tr tr fe tr	100	20 200 20 <150	0 2	0	0	0 2 0	0	0			3	3	3	0	0 0 1 0
Acetylene dichloride	wL tr tr Schm fe	5 100 100 100 100	20 20 SP 700 20		1L 2L	0L 1L	0 0	0 0 0	0 0 0 0	0 0 0	0 0 0 0					3 0 0 3 3
Acetylenetetrachloride	tr tr fe	100 100	20 SP SP	0 0 1	0 0	0 0	0 0 1				0 0	0 1 3			0 1	0 3 3
Acytelene cellulose		<100	20				1	1	1	0						0
Acytelene chlorid			20 SP		1L 1L	OL OL		1 2	2 2	2 2		3 3	3 3	3 3	0 0	
Adhesive, neutral sour			20 20 SP	(0) (1)	0 0 0	0 0 0	0	0 0				0	1	0	0	0 (2)

Res No. No. <th></th> <th>No.</th> <th></th> <th></th>															No.		
Adaptic acid air air air bit bit </th <th>Medium</th> <th></th> <th>Concentration %</th> <th>Temperature (°C)</th> <th>unlalloyed steels</th> <th>18/8-Steel</th> <th>18/8+Mo-Steel</th> <th>Nickel</th> <th>Monel 400 2.4360</th> <th>Inconel 600 2.4816</th> <th>Incoloy 825 2.4858</th> <th>Hastelloy C 2.4819</th> <th>Copper</th> <th>Tombak</th> <th>Bronce</th> <th>Titaniuim</th> <th>Aluminium</th>	Medium		Concentration %	Temperature (°C)	unlalloyed steels	18/8-Steel	18/8+Mo-Steel	Nickel	Monel 400 2.4360	Inconel 600 2.4816	Incoloy 825 2.4858	Hastelloy C 2.4819	Copper	Tombak	Bronce	Titaniuim	Aluminium
Advine L 200 0<	Adipic acid		-					-	-	-	-	-	•		-	-	
Akevine D.5 SP 3 1.L 0.L 0 0 1 1 0.L 1 <th1< th=""> 1 1</th1<>				200		0	0										
Image Image <th< td=""><td></td><td></td><td>0.5</td><td></td><td>3</td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			0.5		3				0								
Abjalackoli 100 25 1 10 0 0 0 0 1				SP													
Holdholdy Hol Lo Lo <thlo< th=""> Lo Lo</thlo<>			100			0	0	0	0	0	0	4					0
Abjechtonice 100 25 - - - 0	Aliyiaikonoi							0	0	0	0						
wL wL vl h0 vl sp vl sp <thvl sp <thv< td=""><td>Allylchloride</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thv<></thvl 	Allylchloride							0	0								
wL 10 680 3 1	Alum	wL								2	0		2	3	3		
Image: base of the sector of the se		wL	10	<80	3	0	0					1					
Aluminuim Schm 100 750 3		wL										1					
wL wL wL wL kg 100 kg 100 kg <th< td=""><td>Aluminuim</td><td>Schm</td><td></td><td></td><td></td><td></td><td></td><td>3</td><td>3</td><td></td><td></td><td></td><td>3</td><td>3</td><td>3</td><td></td><td></td></th<>	Aluminuim	Schm						3	3				3	3	3		
wL wL wL wL kg 100 kg 100 kg <th< td=""><td>Aluminuim acetate</td><td>wi</td><td>3</td><td>20</td><td>3</td><td>0</td><td>0</td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td>0</td></th<>	Aluminuim acetate	wi	3	20	3	0	0					0					0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		wL	100	100								1					Ť
wit. kg SP 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>2</td> <td>2</td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td>						0	0	0	2	2	2						2
Aluminum chloride wL 5 20 3 2L 1L 1 1 1 1 0 2 3 2 0 3 Aluminum chloride wL 5 00 3 2L 1L 1 1 1 1 0 2 3 3 0 0 10 100 20 3 3L 2L 1L 1 <th1< th=""> 1 1</th1<>			kg	SP		0	0	Ŭ		_	-	1					
since since <th< td=""><td>Aluminuim chloride</td><td>wl</td><td></td><td></td><td>3</td><td></td><td></td><td>1</td><td>1</td><td>1</td><td>1</td><td></td><td>2</td><td>3</td><td>2</td><td>0</td><td>2</td></th<>	Aluminuim chloride	wl			3			1	1	1	1		2	3	2	0	2
Ind 10 20 3 31 21 1 1 1 1 0 3 33 33 0 3 up 100 150 3 1 1 1 1 1 1 1 1 33 33 3			5	50	3											0	
10 100 3 10 150 3 20 20 3 20 1 20 1 20<						31	21	1	1	1	1	0	3	3	3		3
20 20 20 3 0 0 25 600 3 100 3 1 <			10	100	3	02		•				Ū	Ũ	Ũ	Ū	0	Ŭ
wL 20 150 3 25 20 20 3 25 3 20 3 25 4 25 100 3 3 4 25 100 3 3 4 2 1 2 1 2 <th1 2 1 2 1 2 1</th1 								1	1	1	1	1	з	з	з	0	
25 60 3			20		3			•			'					3	
25 100 3 40 122 3 40 122 3 40 122 3 40 122 3 0 0 1		wL				3L	2L	1	1	1	1	0	3	3	3		
40 122 3 - 0			25		3											-	
80 100 3 2 2 1 1 0 1 0																	
wL 10 25 3 3 1 1 - 1 1 - 0 0 Aluminium hydroxide ges 20 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 <td></td>																	
Aluminiumformiate - - - - - - - 2 3 3 0 0 Aluminium hydroxide ges SP 2 0 0 - 1 0	Aluminium fluorid							1			0	1				-	0
Aluminium hydroxide ges ges wL 20 2 1 2 0 0 0 0 1 1 0 0 0 0 0 0 </td <td>Aluminiumformiate</td> <td>WL</td> <td>10</td> <td></td> <td>3</td> <td>3</td> <td>3</td> <td>- 1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td>3</td> <td></td> <td></td>	Aluminiumformiate	WL	10		3	3	3	- 1	1					3	3		
wL 10 20 3 0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0	Aluminium hydroxide			20					1		0		0				0
wL 10 20 3 0 0 1 0 0 0 1 Aluminium na-sulphate wL 10 <20 0 0 0 0 1 1 0 1 0 1 0 0 1 Aluminium nitrate wL 10 20 0 <		wL	ges 2						1		0	0	0				1
Aluminium nitrate wL 10 20 0		wL	10	20								-					
wL 10 20 0 0		wL	10			0	0					1					
Aluminium oxyde vic 20 1 0<		wL	10	20													2
Aluminium sulphate wL 10 20 3 0 0 0 0 0 0 2 2 1 0 3 Aluminium sulphate wL 10 SP 3 2 1 1 2 1 1 1 3 <		wL	10		4												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		wL	10														
Amber acid 10 20 10 20 10 10 10 10 20 0 0 10 20 0 0 10 20 0 0 0 2 1 0			10	SP	3	1	0	1				1	3	3	3	3	3
Ammonia tr 10 20 0 0 0 2 1 0	Amber acid		50		3	2	1	1				0	3	3	3	3	
wL 10 20 0 0 0 0 0 0 3 3 3 3 0 0 wL 30 20 0 0 0 3 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0			10	20					1								
wL 10 SP 0 0 3 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0			10		0				0	0							
wL 30 SP 0 0 0 1		wL	10	SP		0	0				1	1	5	5	5		
wL wL wL wL wL wL wL mL 50 50 SP SP ML 20 SP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </td <td></td>																	
wL 100 20 0 0 0 0 1 <td></td> <td></td> <td>50</td> <td>20</td> <td></td> <td>0</td> <td></td>			50	20		0											
wL 100 SP 0 0 1 <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td>					0												
wL 100 SP 3 3 2 Image: Constraint of the state of the					0												
wL all hot 0 0 2 2 0 3 3 3 0 0 Ammonia bifluoride wL 100 20 3 0<	Ammonium alume																
Ammonia bifluoride wL 100 20 3 0	Ammonia bicarbonate	ابدر															
20 80 3 0	Ammonia bifluoride				3				2	2	U	0	3	3	3	U	U
wL 10 SP 3 1LS 1LS 1			20	80	3	0	0					0					
	Ammonia bromide								2			0	3	3	3		
												1					

														Se	BOA	Group
Medium		Concentration %	Temperature (°C)	unlalloyed steels	18/8-Steel	18/8+Mo-Steel	Nickel	Monel 400 2.4360	Inconel 600 2.4816	Incoloy 825 2.4858	Hastelloy C 2.4819	Copper	Tombak	Bronce	Titaniuim	Aluminium
Ammonia carbonate	wL wL wL wL	20 20 50 50	20 SP 20 SP	0 0	0 0 0 0	0 0 0 0	0 1 0 1	0 0 0 0	0 0 0 0	0 0 0 0	0 1 1	2 3	2 3	2 3		
Ammonia chloride	wL wL wL wL wL	25 25 50 50	20 SP 20 SP	3 3 3 3	1LS 2LS 1LS 2LS	0LS 1LS 0LS 1LS	1	0 1 0 1	0	0 1 0 1	0 1 0 1	3	3	3	0 0 0	2 3
Ammonia fluoride Ammonia formate	wL wL wL wL	20 10 10	80 20 70	3	2L3 2LS	2LS					0	3	3	3	0	0 0
Ammonia hydroxyde Ammonia nitrate	wL	100 100 100 10	20 20 SP 25	3 3 3	0 0 0 0	0 0 0 0	0	3	0 3 3 3	0	0 0 0 0	3 3 3 3	3 3 3 3	3 3 3 3		1 0 0
Ammonia oxalate Ammonia perchlorade	wL	10 10 10	20 SP 20	1 3	0 1 0LS	0 0 0LS					0 0 1					
Ammonia persulphate	wL wL wL	10 all 5	SP <70 20	3	0LS 0LS 0	0LS 0LS 0	3	3	1	0	1 1 0	2				2
		10 10 20 20	25 30 20 100	3 3 3 3	1 1	1 1	3 3	3 3			0 0	2 2	3 3	3 3		
Ammonia phosphate		5 10 10	25 20 60	0	1 1	0 0	1 1	1 1	0 0		0	2 3	2 3	2 3		0 1 3
Ammonia rhodanide Ammonia sulphate	wL	5 5 1	20 70	3 3	0 0 0	0 0 0	1	1	0 0 1	0 0 0	0 0 0	2	2	2	0	0 0 2L
	wL wL wL wL wL	5 10 10 100 100	20 SP 20 SP	0	0 1 2 0 0	0 0 0 0	1 1 2	1 1 1 1	1 2 2	0 0 0	0 1 2 1 2	2 3 3	3 3 3	2 3 3	0 0 0 0	2L 2L 3L
Ammonia sulphite Ammoniumfluorsilikat	wL wL	100 100 20	20 SP 40	2 3 3	0 0 1	0 0 0	3 3	3 3	3 2	2 2	0	3 3	3 3	3 3		
Ammoniummolybdat Amoniacal copper chloride	wL	100	100 20	-				1							0	
Amyl acetate	wL wL	10 20 100	20 20 20	0	0	0	0	3 3 0	0	0		0	0	0		0
Amyl alcohol		100 100 100	20 20 SP	1 0 1	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	1 0 0	0	0	0	0	0 0 1
Amyl chloride Amylmercaptan		100 100 100	20 SP 20	1	0LS 1LS 0	OLS OLS O	1	1	1	0	0	0				2
Aniline		100 100 100	160 20 180		0 0 1	0 0 1		1 2	0	0	0	3	3	3		03
Aniline cholours Anilinhydrochloride	wL wL	5 20	20 100		3	3						2	2	2	0 0	
Aniline sulphite Antimony	wL Schm	10 100 100	20 20 650	3	3	3			1L		0					3
Antimony chloride Apple acid	tr wL wL wL	<50	20 100 20 90	0 1 2 3	3 0 0	3 0 0	0 0 2 2	1	1 1	0 0	0 0	3 3	2 2	2 2	0 0	3 3 0 0
Arsenic acid	wL wL Schm	<50	100 65 110	3 3 3	0 0 2	0 0 1	2	1	1	0	0	3	2	2	0	0
Asphalt Atmosphere	Land Indust. Sea		20 -20 bis 30	0 0 1 2	0 0 0LS	0 0 0 0S	0 0 0 0	0 0 1 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 1 1	0 0 0 0	0 0 0 0	0 0 1 2
Azo benzene	500		20	-	0	0	0	0	0	0	0	0		0	Ě	0

														Page P		
Medium		Concentration %	Temperature (°C)	unlalloyed steels	18/8-Steel	18/8+Mo-Steel	Nickel	Monel 400 2.4360	Inconel 600 2.4816	Incoloy 825 2.4858	Hastelloy C 2.4819	Copper	Tombak	Bronce	Titaniuim	Aluminium
Barium carbonate			20	3	0	0		1		0	0				0	1
Barium chloride	Schm	100	1000		3L	3L			1							
	wL	10	SP		1L	0L	1	1	1	1	0	2	3	3		
Barium hydroxyde	wL solid	25 100	SP 20	0	1L 0	0L 0	0	1	1	0	0	1	1	1	0	3
Banum nydroxyde	wL	all	20	0	0	0	1	1	1	0	0	1	1	1		3
	wL	all	SP		0	0				-	1	-				
		100	815	_			1		1	0						
	wL wL	kg hg	20 SP	0 0	0 0	0 0	0				1 1		1			0 3
	VV L	50	100	0	0	0	0	1	1	0	'					3
Barium nitrate	wL	all	40		0	0			1	0		2			0	0
	wL	all	SP		0	0			1	0		2			0	0
	Schm wL		600 20	0	0 0	0 0			1	1		2			0 0	0
	wL		>100	3	0	0			1	0		2			0	0
Barium sulphate			25	1	0	0	1	1		0	0	0		0	0	0
Barium sulphite			25	2	0	0	2					3	3	3		
Beer		100	20		0	0	0	0	0	0	0	0	1	0	0	0
C		100	SP		0	0	0	0	0	0			.		0	0
Beer condiment		20	SP	(4)	0	0		0				3	1	3		1
Beet sugar syrup Benzene acid	wL	all	20 20	(1)	0	0		0			0			0	0	0
Denzene aciu	wL	10	20	1	0	0	0	0	0	0	0	1	1	1	0	0
	wL	10	SP	3	0	0	0	0	-	-	0	-	2		0	3
	wL	ges	20		0	0					0				0	0
Benzene chloride	tr	100	20													0
Benzene, non-sulfureos	fe	100 100	20 20		0	0	0	0	0	0	1				0	3
Derizerie, non-sultureos		100	SP		0	0	1	1	1	1	1	1	1	1	0	Ū
Benzene sulphonal acid		91,3	140	3	3	3					1				3	
		92	200	3	3	3					0				3	
Blood (pure)			36		0S	0										
Bonder solubilzing Borax	wL	1	98 20		0	0	0	0	0	0						
Dorax	wL	ges	20	1	0 0	0	0 0	0	0 0	0 0			0	0	0	0
	wL	ges	SP	3	0	0	0	0	0	0						1
	Schm				3	3									0	
Boric acid	wL wL	1 4	20 20	3 3	0 0	0 0	1 1	1 1	1 1	0 0	0 0				0 0	0 0
	wL	5	20	3	0 0	0	1	1	1	0 0	0 0				0	0
	wL	5	100	3	0	0	2	1	2	0	0	1	2	1	0	0
	wL	ges	20	3	0	0	0	1	1	0	0				0	
	wL wL	all all	20 <sp< td=""><td>3 3</td><td>0 0</td><td>0 0</td><td></td><td>0</td><td>0</td><td></td><td>0 0</td><td></td><td></td><td></td><td>0 0</td><td></td></sp<>	3 3	0 0	0 0		0	0		0 0				0 0	
	** -	an 10	20	3	0	0	1	1	1	0	0				0	
Boron			20			0	0									
Brandy			20		0	0										1
Promido water		0.00	SP		0	0										3
Bromide water		0,03 0,3	20 20		0L 1L	0L 1L										
		0,3	20		3L	3L										
Bromine	tr	100	20	3L	3L	3L	0	0	0	1	0	0	0	0	2	3
	tr	100	<65	3L	3L	3L		0	0	1	0					3
	tr fe	100 100	<370 20	3L 3L	3L 3L	3L 3L	0	0	3		2 3	2	3	1	0	3 3
	fe	100	20 50	ЭL	3L 3L	3L 3L	0		3		3	_	3		U	3
Butadiene		100	30		0	0	0	0	0	0	0					
			20		0	0	0	0	0	0	0					0
Butane		100	20	0	0	0					4	0	0	0		
Butter		100	120 20		0	0	0	0	0	0	1 0	1	2	1	0	0
Butter acid		25	20	3	1	0	2	1	2	1	0	1	<u> </u>		0	0
		25	60	3	1		2		-		0					0
		50	20	3		L	2	L			0					0
Butter acid		50	60	3		_	2				0					1
		ges ges	20 SP	3 3	0 2	0 0	2 2				0 0					0 1
Buttermilk		900	20	U	0	0	-	0	0	0	0				0	0
Butyl alcohol		100	20	0	0	0	1	1	1	0	0	0	0	0	0	0
		100	SP	0	0	0	ļ	2	2	ļ	0	<u> </u>	<u> </u>		0	0
Butyl acetate		II	20	0	I	0	I	1	I	I	I	0	0		l	0

					-	-		-						and a state		
Medium		Concentration %	Temperature (°C)	unlalloyed steels	18/8-Steel	18/8+Mo-Steel	Nickel	Monel 400 2.4360	Inconel 600 2.4816	Incoloy 825 2.4858	Hastelloy C 2.4819	Copper	Tombak	Bronce	Titaniuim	Aluminium
			SP					1								
Cadmium	Schm Schm	100 100	350 400	1	2 2	2 2										
Calcium	Schm	100	800	3	3	3										
Calciumbisulphite	wL	ges ges 20 20	20 SP 20 SP	3 3	0 2 0 1	0 0 0 0						0	3	1	0 0 0 0	
Calcium carbonate			20		0	0	0	0	0	0	0					
Calium chlorate	wL wL wL	100 10 10 100	20 20 100 100	0	0LS 0LS 2LS 2LS	0LS 0LS 1LS 1LS	1 1 1 1	1 1 1	1 1 1 1	0 0 0 0	1 1 1	1 1 1 1				
Calcium Chloride	wL wL wL	10 25 25 ges	20 20 SP 20	3333	0S 0L 0LS 0L	0S 0L 0LS 0L	0 0 1	0	0 0 0	0 0 0	0 0 0	1 1	3333	1 2	0 0 0	3 3 3
Calcium hydroxyde		ges <50 <50 ges ges	SP 20 <sp 20 SP</sp 	3 0 0 0 0	1L	0L 0 0 0	1 1 0 0	2 1 1 0 0	0 1 1 1 2	0 1 1 1 2	0 0 0	1 1	3 0	0	1L 0 0 0 0	3 3 3 3 3
Calcium hypochloride	wL	10 15 20 20 ges	25 50 25 50 <40	3 3 3 3 3	3LS 3LS 3LS 3LS 2LS	0LS 0LS 0LS 0LS 1LS		3			1 1 0 1 0	1 1	3 3	1 1	0 0 0 0	3 3 3 3 3
Calcium nitrate	Schm	20 50 100	100 100 148		0 0 0	0 0 0		0 0 0	0 0 0							
Calcium sulphate	fe		20	1	0	0	0	0	0	0	0					0
(Gypsum) Calcium sulphite	wL	ges ges	SP 20 SP	3 0 0	0 0 0	0 0 0					1					1 1 1
Camphor		20	(0)	0	0	0	0	0	0	0	0					0
Carbon dioxide	tr tr tr tr tr	100 100 100 100 all	20 <540 700 1000 <760	0 0 3 3	0	0	0 0	0	0 0 1 3	0 0	0	0 3	0	0	0	0
Carbon dioxide	fe fe	15 20	25 25	1	0	0	1	1	1	0	0	0	2	1	0	3 3
Carbon oxide, 100 atü	fe	100 100	25 20	2	0	0	1 0	1 0	1 0	0	0	0			0	3
	4	100	<540	3	(0)		3	(1)	(3)	-	0	2 0				1
Carbon tetrachloride	tr tr tr fe fe	100 100 100	20 75 SP 20 SP	0 1 0 1	0L 0L 0L 0L 1L	0L 0L 0L 0L 1L	0 0 3	0 0 3	0	0	0	0 1 2	0 0 2 2	1 3	0 0 0 1	0 0 2 1 3
Carnallite	wL	kg kg	20 SP	3	0L 2LS	0L 1LS				0 0	0 0					-
Castor oil		100 100	20 100	(0) (2)	0	0	0 0	0 0	0 0	0	0	0 0	0 0	0 0	0 0	0 0
Cement	fe		20													3
Cheese Chloramin		0,5	20 20 SP	3 3	0 1L 1L	0 0L 0L		0								0
Chlorine	tr tr tr tr tr fe fe	0,3 100 100 100 100 100 99 99	20 100 <250 <400 500 20 100	3 0 3 3L 3L 3L 3L	0L 0L 0L 2L 3L 3L 3LS	0L 0L 0L 1L 2L 3L 3LS	0 0 0 1 0	0 0 0 0 1 2	0 0 0 0 0 1	0 0 2	0 0 1 1 1 0	0 0 3 3 3 3	3 3	0 2 3	3 3 3 3 3 0 1	0 0 3 3 3 3 3 3 3
Chlorine benzene	16	100	20	3L 0	0LS	0LS	1	1	1	1	0	1	5	5		1
Chlorine calcium	fe wL wL wL	100 1 5 5	SP 20 20 20 100	3 3 3 3	0LS 1LS 2LS 1LS 3LS	0LS 1LS 0LS 0LS 3LS	1 0 0	1	1	1	0	1 3	3	1	0 0 1	2 3 3 3 3
Chlorine dioxide	tr wL	0,5	70 20	2	2 3	03					0 1		3 3	3 3		

														and a state		
Medium		Concentration %	Temperature (°C)	unlalloyed steels	18/8-Steel	18/8+Mo-Steel	Nickel	Monel 400 2.4360	Inconel 600 2.4816	Incoloy 825 2.4858	Hastelloy C 2.4819	Copper	Tombak	Bronce	Titaniuim	Aluminium
	wL	1	65	3	3	3					2		3	3		
Chlorine sulphinated acid	tr	100	20		1LS	0LS	0	0	0	0	0	0			3	0
	fe wL	99 10	20 20	3 3	2LS 3	0LS 3	3 3		1 0	1 0					3 3	3 3
Chlorine vinegar acid	Mono-	50	20	3	3	3	1		1	0		2	3	3	3	3
enienie megaraeia	mone	Konz	20	3	3	3	1		1			-	U	U		Ŭ
		<70	SP	3					2		1					
	Di- Tri-	100 >10	100 20	3 3	0L	0L			0		0					
	111-	>10	20 SP	3	UL	UL			3		1					
Chlorine water		ges	20	3	1LS	1LS			-		0				0	3
		ges	90	3	2LS	2LS					1					3
Chloroform	fe	99 99	20 SP	3 3	0LS	0LS 0LS	0 0	0 0	0 0	0 0	0 0	0 1			0 1	3
Chocolate	fe	99	20	0	0LS 0	015	0	0	0	0	0	(0)	(0)	(0)	0	3 0
Chocolato			120	0	0	Ő	0	Ő	0	Ő	0	(0)	(0)	(0)	0	0
Chromic alum	wL	ges	20	3	1	0	1	0	0				3			3
	wL wL	ges 10	SP 20	3 3	3 0	3 0	2 0						3 3			3 1
Chromium acid	wL	5	20	3	0	0	3	3	3	1	0	3	3	3	0	1
		5	90	3	3	3	3	3	Ŭ		1	3	3	3	0	
		10	20	3	0	0	2	2	2	1	0	3	3	3	0	1
		10 50	SP 20	3 3	3 3	3 3	3 2	3 2	3 2	1 1	0	3 3	3 3	3 3	0 0	3 2
		50	SP	3	3	3	3	3	3	1		3	3	3	0	3
Chromium sulphate		ges	20	2	0	0	0	0	0	0	0					
			90	3	3	2	0	0	1	0	0					
Cider Cinammon acid		100	20 20		0	0										1 3
Cocoa		100	SP	2	0	0	0	0	0	0	0	0	0	0	0	0
Coffee	wL		20	0	0	0	0	0	0	0	0	0	0	0	0	0
			SP	2	0	0	0	0	0	0	0	0	0	0	0	0
Copper acetate	wL		20 SP	(3) (3)	0 0	0 0	(1)	(1)	(1)					3 3		3 3
Copper-II-chloride	wL	1	20	3	1LS	0LS				0	1			5	0	5
	wL	1	SP	3	3LS	3LS				Ŭ					Ő	
	wL	5	20	3	2LS	1LS	3				1	2	3	2	0	3
	wL wL	40 40	20 SP	3 3	3 3	3 3	3 3		3	3	1				0	
	wL	ges	20	3	3	3	3			0					Ū	
Copper-II-cyanide	wL	10	20	2	0	0					0					
	wL	10	SP SP	3 3	0 0	0	3	3	3		1 1	3				3
Copper-II-nitrate	wL wL	hg 50	20	3	0	0	3	3	3	0	1	(2)	(3)	(2)	0	3
	wL	50	SP		Ő	Ő	Ŭ	3	3	Ŭ	1	(_)	(0)	(_)	Ő	Ŭ
	wL	ges	20		0	0	3	3	3	0	1	3			0	3
Copper-II-sulphate (copper vitriol)		all all	20 <sp< td=""><td>3 3</td><td>0 0</td><td>0 0</td><td>2 3</td><td>2 3</td><td>2 3</td><td>0</td><td>0 0</td><td>(1) 3</td><td>(3)</td><td>(1)</td><td>0 0</td><td>3 3</td></sp<>	3 3	0 0	0 0	2 3	2 3	2 3	0	0 0	(1) 3	(3)	(1)	0 0	3 3
Cotton seed oil		ali	25	0	0	0	5	3	5	0	0	0	1	0	0	5
Creosote			20	0	0	0						0				1
			SP													3
Creosote		100 100	20 SP		0 0	0 0						0	1	0		
Crude oil		100	20	1	0	0	0	0	0	0						0
		100	100	1	0	Ő	1	0	0	Ŭ						1
		100	400	3				3				3	3			
Developer (Photo)		100	20	2	0L	0L					4			0		
Dichlorethene		100 100	<50 SP	3	2L	1L					1			0 0		
Dichlorethylene	tr	<100	<30	0	0L	0L	0	0	0	0					0	0
	tr	100	SP		0L	0L									0	1
	wh	<100	<700 105													3 3
	wh	1:1	<sp< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Ŭ</td></sp<>													Ŭ
Dichlorethylene		100	20	0	0L	0L						0			0	
Discolati		100	SP		0L	0L	2					0			1	
Diesel oil Diesel oil, S <1%		100	20 20	0	0 0L	0 0L	0	0	0	0	0	0	0	0	0	0
		100	100	0	0L 0L	0L 0L	2	0	0	0	0	1	1	1	0	1
Diphenyl		100	20	0	0S	0S	0	0	0	0	0	0	0	0	0	0
Dississ		100	400	0	0S	0S	0					0				
Dripping			20	1	0	0	I	I								<u> </u>

													and a state		
Medium	Concentration %	Temperature (°C)	unlalloyed steels	18/8-Steel	18/8+Mo-Steel	Nickel	Monel 400 2.4360	Inconel 600 2.4816	Incoloy 825 2.4858	Hastelloy C 2.4819	Copper	Tombak	Bronce	Titaniuim	Aluminium
Dye liquor		20		0	0		0								0
alkaline or neutral		20 SP		0 0	0 0		0 0								0 0
organic sour		20 SP		0 0	0 0		0 0								1 1
heavily sulphuric		20 SP	3 3	1 3	0 1		0 0	0							
slightly sulphuric		20 SP	3	0	0		0	0							
Ether	100 100 all	20 SP SP	0	0 0 0	0 0 0		0 0 0			1	0 0 0	0 0 0			0
Etherial oil	an							_	_		0	0			
Citrus oil Eucalyptus oil		20 SP		0 0	0 0	0 0	0 0	0 0	0 0						0 0
Caraway seed oil Ethyl acetate		20 20	1	0	0	0	0	0	0	1	0		0	0	0
	all 35 100	<sp 120 20</sp 	1 1 1	0 0 0	0 0 0	2 2	1 1 1			1 0 1	2 2 0	2 2 1	2 2 0		1
Ethod all and all	100	SP	1	0	0	2	1			1	2	2	2	0	
Ethyl alcohol denaturalized	100 96	20 20	0	0	0 0	0 0	0	0	0	0	0 0	0 0	0 0	0 0	0 0
Ethyl benzene	96	SP 115	2	0	0	0	0	0	0	0				0	0
Ethyl chloride		20 SP	0	OL OL	OL OL	0	0	0	0	1 1	2 3	2 3	2 3	0 0	1
tr		20	0	0L	0L	0	0	0	0	1	3	3	3	0	0
tr fe		SP SP		0L	0L					1 1				0 0	1 3
wL wL	25 50	20 25				0 0	0 0	0 0	0 0	1 1				0 0	
wL	70	25				0	0	0	0	1				0	
wL wL	100 5	25 25		OL OL	OL OL	0 0	0 0	0 0	0 0	1 0				0 0	2
Ethylene Ethylene bromide		20 20		0 0L	0 0L										0
,		SP		0L	0L										3
Ehtylene diamide Hydrochloride Ethylene chloride tr	100 100	SP 20	3	0L	0L		0	2	2		2	3	2	0	0
vL tr	100 100	50 SP	3	1L 0L	1L 0L					1				0 0	3 0
fe	100	20		UL	0L									U	3
wL	100	SP 20	1	0	0										3
Ethylene glycol	100 100	20 120	0	0	0	1	1	1	0		1	2	2		0 0
Ethylene oxyde		20		0	0										0
Exhaust gas Exhaust gas (diesel) tr		600	3	0L	0L	0	0	0	0	0					1
(Flue gas) tr		600 900 1100	3 3 3	0L	0L			0 0 0	0 0	0 0 0					3
Fatty acid, high technology	100	60	3	0	0	0	0	0	0	0	0	2	1	0	1
	100 100	150 235	3 3	0 2	0 0	0 0	1 1	0 0	0 0	0 0	0 3	3	3	0 0	3 3
Ferro-gallic-ink	100	300 20	3	3 0L	0 0L	0	1 1	0	0	0	3	3	3	0	3
Fluorbor ether	100	50								0					
Fluorine tr tr	100 100	20 200	0 0	0 1LS	0 1LS	0 0	0 0		0	0 0	0 3	0	0	0	3 3
tr fe	100 100 100	500 20	3 3	3	2	0 0	0			0	3	3	3		3 3
Formic acid	10	20	3	0	0	0	0	0	0	0	5	5	5		0
	10 50	SP 20	3 3	1 0	0 0	2		0	0 0	0 0					3
	50 80	SP 20	3 3	3 0	1 0		2	0	0 0	0 0	1				0
	80	SP	3	3	2		2	1	0	0	0				2
	100 100	20 SP	3 3	0 1	0 1		3 3			0 0	1	1	1		0
Formic aldehyde	10 10	20 70	3 3							0 1	0	2	0	0 0	1 2
			5		1		•	1	1	• •	1	. !	1		~

														Sale P		
Medium		Concentration %	Temperature (°C)	unlalloyed steels	18/8-Steel	18/8+Mo-Steel	Nickel	Monel 400 2.4360	Inconel 600 2.4816	Incoloy 825 2.4858	Hastelloy C 2.4819	Copper	Tombak	Bronce	Titaniuim	Aluminium
		40	20	3	0	0		0			0	0		0	0	1
Freon		40 100	SP -40	3	0	0	0	0	0	0	1 0	0	0	0	0	
Freon		100	-40 100		0	0	0	0	0	0	0	0	0	0 0	0	
Fruit acid			20 SP	(1) (2)	0	0	0 (0)	0 (0)	0	0	0	(0) 1	3	1		0
Fruit juce			20 SP	1	0	0	(-)	0				1	3	1		0
Fuel, benzene	tr		20	0	0	0	0	0	0	0	0	0	0	0	0	0
	tr		SP 20	0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0
	wh wh		SP	0 0	0	0	0 0	0	0	0 0	0	0	0 0	0	0	3 3
Fural		100	25	2	0	0							2	0		
Furaldehyde		100	SP 20	3	0	0						2	3	1		0
			SP	3	0	0							0	•		3
Gallic acid	wL wL	1 <50	20 100	2				0								0 0
	WL	<50 100	20	2 2	0	0										0
		100	SP	3	0	0			3							
Gelatine	wL	<40	80 50	1	0	0	0 1	0 1	0 0	0 0	0 0	0	1	0	0	0 0
Glas	Schm	100	1200	1	1	1			Ŭ	Ŭ	Ű					Ū
Glucose			20		0	0						0	1	0		
Glutamine acid			20 80	1 3					0 1	0 1	0 1					
Glycerin		100	20	0	0	0	0	0	0	0	0	0	0	0	0	0
		100	SP	1	0	0	0	0	0	0	0	1	0	0	0	0
Glykol acid			20 SP	3 3	1 3	1 3					0 0				0	1 1
Gum (raw)			20	1	0	0	0	0	0	0	0	0	0	0	0	0
Heavy fuel		100	20		0L	0L	2	0	0	0	0	0	0	0	0	0
Hexamethylenetetramine	wL	20	60	1	0	0					0					
Hydrobromic acid	wL	80	60 20	2	3	3	3	3	2	3	0	2	3	2		3
Hydrocarbon, pure			20	0	0	0	5	5	2	5		2	0	0	0	5
Hydrochloric acid		0.2	20	3	1LS	1LS	(1)				0		-	-	0	
		0.2	50 50	3	2LS	3LS					0				0	
		1 1	100	3 3	3 3	3 3					0 3				0 (1)	
		10	20	3	3	3	(2)				1				ີ1	
Hydrofluosilic acid		5 100	40 20	3 3	1L 1L	1L 2L					1 1	1	(1) 3	1		3 3
		100	100	3	2L	2L 2L					1		3		2	3
Hydrocyanic acid		20	20	3	0	0	2	1	1	0	0	3	3	3	0	0
Hydrogen		100	20	0	0	0					0	0	0			0
		100 100	300 500	1 3	0 0	0 0					0 0	0	0 3			0 0
Hydrogen fluoride		5	20	1	3	3	0	0	0	0	0	3			3	3
Lively and five side a sid		100	500	3	3	3	1	2	2	3	1	3	3	0	3	3
Hydrogen fluoride acid HF-Alkylation		all 10	20 20	3 3	3L 3L	3L 3L	1 1	1 1	1 1	1 1	1 0	3 2	3 3	3 2	3 3	3 3
,		80	20	1	-	-	1	1	1	1	1	1	-		3	3
l haden new average date		90	30		0	0	1	0	1	1 0	0	0			3	3
Hydrogen superoxide		all 30	20 20		0 0	0 0	1	1	1	0	0 0	2 1	2	1	1	0
		30	70		0	0					0	1	2	1		
		85 all	<70 SP	2	0 2	0 0					0 0	3			1	
Hydroquinone		an	20	2	2	0	1	1	0	0	0	5				0
Hydroxylamine sulphate	wL	10	20		0	0										
	wL		SP 20		0	0		ļ		<u> </u>	<u> </u>	<u> </u>				3
Hypochlorous acid Illuminating gas			20	(1)	0	0		0								3
Inert gas	tr		20	0	0	0	0	0	0	0	0	0	0	0	0	0
	fe	1.0-	20	0	0	0	0	0	0	0	0	0	0	0	0	0
Ink		100 100	20 SP	1	0L 1L	0L 1L		0								3 3
Insulin		100	<40					0	0	0	0					
lod	tr	100	20	0	0L	0L	~	0	0	0		3	3	3	3	0
	fe	100 100	300 20	1 3	0L 3L	0L 2L	3 3	3		0	0 1				2	3 3
	10	100	20	5	JL	26	0	, U								

Medium Iod, alcohol 7% Iod hydrogene acid wL Iodoform, steam tr fe Iod tincture Iron-II-chloride tr wL wL Iron-III-chloride tr wL wL Iron-III-chloride tr wL wL Iron-III-sulphate wL Iron-III-sulphate wL Isopropyl nitrate Kerosene Lactic acid wL Lead wL Lead acetate wL Lead nitrate wL Lead nitrate wL Lead nitrate wL Lead suggar Lead vinegar, basic wL Lime-milk Lemon acid wL Lime-milk Lemon acid wL Lisseed oil + 3% H_2SO4 Lithium Chloride Lysol Magnesium acbonate Schm	Concentration %	20 20 20 20 20 20 20 20 20 20 20 20 20 2	c unlalloyed steels	18/8-Steel	18/8+Mo-Steel	le	400 2.4360	Inconel 600 2.4816	Incoloy 825 2.4858	y C 2.4819					
lod hydrogene acid wL lodoform, steam tr fe lod tincture Iron-II-chloride tr wL wL Iron-III-chloride tr wL wL Iron-III-chloride tr wL wL Iron-III-chloride tr wL wL Iron-III-nitrate wL WL wL Iron-III-sulphate wL Iron-III-sulphate wL Isopropyl nitrate Kerosene Lactic acid wL Lead wL Lead acetate wL Lead nitrate wL Lead vinegar, basic wL Lime-milk Leemon acid wL Limenmilk Leemon acid wL Lysol Schm Lithium chloride Lysol Magnesium Schm	10 100 10 50 50	20 60 20			18	Nickel	Monel 400	Inconel	Incoloy	Hastelloy	Copper	Tombak	Bronce	Titaniuim	Aluminium
lod hydrogene acid wL lodoform, steam tr fe lod tincture Iron-II-chloride tr wL wL Iron-III-chloride tr wL wL Iron-III-chloride tr wL wL Iron-III-chloride tr wL wL Iron-III-nitrate wL WL wL Iron-III-sulphate wL Iron-III-sulphate wL Isopropyl nitrate Kerosene Lactic acid wL Lead wL Lead acetate wL Lead nitrate wL Lead vinegar, basic wL Lime-milk Leemon acid wL Limenmilk Leemon acid wL Lysol Schm Lithium chloride Lysol Magnesium Schm	10 100 10 50 50	60 20		1L	0L	3					3	3	3		
ied tincture iron-II-chloride tr Iron-II-chloride tr wL Iron-III-chloride tr wL WL wL wL Iron-III-nitrate wL wL Iron phosphate (Bonder) wL Iron-II-sulphate wL wL Isopropyl nitrate Kerosene Lactic acid wL Laquer (also varnish) Lead Lead wL Lead acetate wL wL wL Lead vinegar, basic wL wL wL Lime-milk Lemon acid wL wL Lime-milk Lemon acid wL Lithium chloride wL Lysol Magnesium Schm Lysol Schm	10 100 10 50 50	20		3	3							3			3
Iod tincture Iron-II-chloride tr Iron-II-chloride tr wL wL Iron-III-chloride tr wL wL Iron-III-chloride tr wL wL Iron-III-chloride wL Iron-III-sulphate wL Iron-III-sulphate wL Isopropyl nitrate Kerosene Lactic acid wL Lead wL Lead acetate wL wL wL Lead nitrate wL Lead vinegar, basic wL Lime-milk Lemon acid wL Limeed oil + 3% H_2SO_4 Lithium Lysol Magnesium Schm	10 100 10 50 50	1	0	0	0										0
Iron-II-chloride tr Iron-III-chloride tr WL WL Iron-III-chloride tr WL WL Iron-III-nitrate WL Iron phosphate WL Iron-III-sulphate WL Iron-III-sulphate WL Isopropyl nitrate Kerosene Kerosene WL Laquer (also varnish) UL Lead WL Lead nitrate WL WL WL Lead vinegar, basic WL Lime-milk WL Lemon acid WL Linseed oil + 3% H_2SO_4 Lithium Schm Lysol Magnesium	10 100 10 50 50	20	3	0L	0L										0
Iron-III-chloride tr Iron-III-nitrate wL WL wL Iron phosphate wL (Bonder) Iron-II-sulphate Iron-III-sulphate wL Iron-III-sulphate wL Isopropyl nitrate Kerosene Lactic acid wL Laquer (also varnish) Lead Lead wL Lead nitrate wL wL wL Lead vinegar, basic wL Lime-milk Lemon acid wL Linseed oil + 3% H_2SO_4 Lithium Lysol Magnesium Schm	10 100 10 50 50	20	0	2L	0L	2	2	2	2	0				0	3
Iron-III-chloride tr wL wL wL wL Iron-III-nitrate wL Iron phosphate wL (Bonder) wL Iron-III-sulphate wL Iron-III-sulphate wL Iron-III-sulphate wL Isopropyl nitrate Kerosene Lactic acid wL Laquer (also varnish) Lead Lead wL Lead acetate wL wL wL Lead nitrate wL wL wL Lead vinegar, basic wL Lime-milk L Lemon acid wL Linseed oil + 3% H_2SO_4 Lithium Schm Lysol Kagnesium	100 10 50 50	20 20	3	3	3	3 3	3 3	3	2	0 1	1	3	1	0 0	3
wL wL wLIron-III-nitratewL wL wLIron phosphate (Bonder)wLIron-III-sulphatewLIsopropyl nitrate KerosenewLLactic acidwLLaquer (also varnish)ULLeadwLLead acetatewLwLwLLead nitratewLWLwLLead ovinegar, basicwLLime-milkWLLemon acidwLLiseed oilwL+ 3% H_2SO4UthiumLithiumSchmLysolYsolMagnesiumSchm	50 50	20	0	0L	0L	2	2	2	1	0	3	3	3	0	3
wLIron-III-nitratewLWLwLWLwLIron phosphateWLIron-II-sulphatewLIron-III-sulphatewLIsopropyl nitrateKeroseneLactic acidwLLactic acidwLLaquer (also varnish)LeadLead acetatewLwLwLLead nitratewLwLwLLead nitratewLLead suggarLead vinegar, basicwLLemon acidwLLime-milkLemon acidwLLiseed oil+ 3% H_2SO4LithiumLithium chloridewLLysolMagnesiumSchmLysol	50	Sp	3	3L	3L				2					0	
Iron-III-nitrate wL Iron phosphate wL Iron-III-sulphate wL Iron-III-sulphate wL Isopropyl nitrate Kerosene Kerosene wL Lactic acid wL Lead wL Lead acetate wL Lead nitrate wL Lead suggar wL Lead vinegar, basic wL Lime-milk wL Limeon acid wL Lishum Schm Lithium Schm Lysol Yusol		20	3	3L	3L			2		1				0	l
wL wL wLIron phosphate (Bonder)wLIron-III-sulphatewLIron-III-sulphatewLIsopropyl nitrate KerosenewLLactic acidwLLaquer (also varnish)wLLeadwLLead acetatewLwLwLLead nitratewLwLwLLead origar, basicwLLime-milkwLLemonacidwLLinseed oilschmLithiumSchmLithiumSchmLysolysolMagnesiumSchm		<sp 20</sp 	3	3L 0	3L 0			3		0				0	
Iron phosphate (Bonder) wL Iron-II-sulphate wL Iron-III-sulphate wL Isopropyl nitrate Kerosene Lactic acid wL Laquer (also varnish) L Lead wL Lead acetate wL Lead nitrate wL Lead suggar wL Lead vinegar, basic wL Lime-milk wL Lemon acid wL Linseed oil + + 3% H_2SO4 Lithium Lysol Schm Lysol Schm	all	20	3	0	0					0					
(Bonder)Iron-II-sulphatewL wLIron-III-sulphatewLIsopropyl nitratewLKerosenewLLactic acidwLLaquer (also varnish)wLLeadwLLead acetatewLwLwLLead nitratewLwLwLLead vinegar, basicwLLime-milkwLLemon acidwLLinseed oilwL+ 3% H_2SO4LithiumLithium chloridewLLysolSchmMagnesiumSchm	all	SP	3	0	0										
Iron-II-sulphate wL Iron-III-sulphate wL Isopropyl nitrate Kerosene Lactic acid wL Laquer (also varnish) Lead Lead wL Lead acetate wL wL wL Lead nitrate wL Lead vinegar, basic wL Lime-milk wL Lemonade Linseed oil + 3% H_2SO4 Lithium Schm Lysol Magnesium Schm		98		0	0										
Iron-III-sulphate wL Isopropyl nitrate wL Kerosene wL Lactic acid wL Laquer (also varnish) wL Lead wL Lead acetate wL wL wL Lead nitrate wL wL wL Lead vinegar, basic wL Lime-milk wL Lemon acid wL Linseed oil + 3% H_2SO_4 Lithium Schm Lithium chloride wL Lysol Schm	<u> </u>			0	0		_								
Iron-III-sulphate wL Isopropyl nitrate Kerosene Kerosene wL Lactic acid wL Lactic acid wL Laquer (also varnish) Lead Lead wL Lead acetate wL wL wL Lead nitrate wL wL wL Lead vinegar, basic wL Lime-milk wL Lemon acid wL Linseed oil + 3% H_2SO_4 Lithium Schm Lithium chloride wL Lysol Schm	all	20 SP	0	0 0	0 0	3	1 1			1 1	1	3	1		1 3
Isopropyl nitrate Kerosene Lactic acid wL Lactic acid wL Lactic acid wL Laquer (also varnish)	<30	20	3	0	0	5				0	3	3	3		3
Kerosene Lactic acid wL Lactic acid wL Lactic acid wL Laquer (also varnish) Lead Lead wL Lead acetate wL Lead nitrate wL wL wL Lead vinegar, basic wL Lime-milk wL Lemon acid wL Linseed oil + + 3% H_2SO_4 Lithium Lithium chloride wL Lysol Schm Magnesium Schm	<30	<65	3	0	0					0		-			
Kerosene Lactic acid wL Lactic acid wL Lactic acid wL Laquer (also varnish) Lead Lead wL Lead acetate wL Lead nitrate wL wL wL Lead vinegar, basic wL Lime-milk wL Lemon acid wL Linseed oil + + 3% H_2SO_4 Lithium Lithium chloride wL Lysol Schm Magnesium Schm	<30	80	3	1	0						3	3	3		3
Kerosene Lactic acid wL Lactic acid wL Lactic acid wL Laquer (also varnish) Lead Lead wL Lead acetate wL Lead nitrate wL wL wL Lead vinegar, basic wL Lime-milk wL Lemon acid wL Linseed oil + + 3% H_2SO_4 Lithium Lithium chloride wL Lysol Schm	<30	SP	3	1	0							0			
Lactic acid wL Laquer (also varnish)	100	20 20	(0)	0	0	0	0	0	0	0	(0)	0 (0)	(0)		
Laquer (also varnish) Lead Lead acetate wL wL wL Lead nitrate wL wL wL Lead suggar wL Lead vinegar, basic wL Lime-milk wL Lemon acid wL Limseed oil + + 3% H_2SO_4 Lithium Lithium chloride wL Lysol Schm Magnesium Schm	100	20	(0)	0	0	0	0	0	0	0	0	2	(0)	0	0
Lead Lead acetate wL wL wL Lead nitrate wL wL wL Lead suggar wL Lead vinegar, basic wL Lime-milk wL Lemon acid wL Linseed oil + + 3% H ₂ SO ₄ L Lithium Schm Lithium chloride wL Lysol Schm	1	SP		Ő	Ő						Ũ	~		Ő	3
Lead Lead acetate wL wL wL Lead nitrate wL wL wL Lead suggar wL Lead vinegar, basic wL Lime-milk wL Lemon acid wL Linseed oil + 3% H ₂ SO ₄ Lithium Schm Lithium chloride wL Lysol Schm	10	20		0	0	(1)	0	0			1	2	1	0	0
Lead Lead acetate wL wL wL Lead nitrate wL wL wL Lead suggar wL Lead vinegar, basic wL Lime-milk wL Lemon acid wL Linseed oil + 3% H ₂ SO ₄ Lithium Schm Lithium chloride wL Lysol Schm	10	SP		3	2	3	3	(2)		0	1			0	3
Lead Lead acetate wL wL wL Lead nitrate wL wL wL Lead suggar wL Lead vinegar, basic wL Lime-milk wL Lemon acid wL Linseed oil + 3% H ₂ SO ₄ Lithium Schm Lithium chloride wL Lysol Schm	50 50	20 SP		0 2	0 1	1		0 (1)		0 (0)				0 0	0 3
Lead Lead acetate wL wL wL Lead nitrate wL wL wL Lead suggar wL Lead vinegar, basic wL Lime-milk wL Lemon acid wL Linseed oil + 3% H ₂ SO ₄ Lithium Schm Lithium chloride wL Lysol Schm	80	20		0	0			(1)		(0)				0	0
Lead Lead acetate wL wL wL Lead nitrate wL wL wL Lead suggar wL Lead vinegar, basic wL Lime-milk wL Lemon acid wL Linseed oil + 3% H ₂ SO ₄ Lithium Schm Lithium chloride wL Lysol Schm	80	SP		2	1									0	3
Lead Lead acetate wL wL wL Lead nitrate wL wL wL Lead suggar wL Lead vinegar, basic wL Lime-milk wL Lemon acid wL Linseed oil + 3% H ₂ SO ₄ Lithium Schm Lithium chloride wL Lysol Schm	100	SP		2	1	0	-				0	0		0	3
Lead acetate wL Lead nitrate wL wL wL Lead suggar wL Lead vinegar, basic wL Lime-milk wL Lemon acid wL Limseed oil + + 3% H_2SO_4 Lithium Lithium chloride wL Lysol Schm Magnesium Schm		20 100	(1)	0	0	0	0 0				0	0	0	0	0 (1)
wL Lead nitrate wL wL wL Lead suggar wL Lead vinegar, basic wL Lime-milk wL Lemon acid wL Limseed oil	100	360	(0)	(2)	(1)	(2)	2	0							0
wL Lead nitrate wL wL wL Lead suggar wL Lead vinegar, basic wL Lime-milk wL Lemon acid wL Limseed oil		600	(0)	(2)	(1)	(3)		0							1
wL Lead nitrate wL wL wL Lead suggar wL Lead vinegar, basic wL Lime-milk wL Lemon acid wL Lemonade ulthium Linseed oil schm Lithium Schm Lithium chloride wL Lysol Schm	10	20		0	0										0
Lead nitrate wL wL wL Lead suggar wL Lead vinegar, basic wL Lime-milk wL Lemon acid wL Lemonade Linseed oil + 3% H ₂ SO ₄ Lithium Lithium chloride wL Lysol Schm	all	SP 20		0	0										0
wL Lead suggar Lead vinegar, basic wL Lime-milk wL Lemon acid wL Lemonade ultime-milk Linseed oil schm + 3% H ₂ SO ₄ ultihum Lithium chloride wL Lysol Schm		20		0	0										
Lead suggar Lead vinegar, basic wL Lime-milk wL Lemon acid wL Lemonade Linseed oil + 3% H ₂ SO ₄ Lithium Lithium chloride wL Lysol Schm Magnesium Schm		100		0	0										0
Lead vinegar, basic wL wL Lime-milk wL Lemon acid wL Lemonade Linseed oil + 3% H ₂ SO ₄ Lithium Lithium Schm Lithium chloride wL Lysol Schm	50	20		0	0			-	-						3
wL Lime-milk Lemon acid wL Lemonade Linseed oil + 3% H ₂ SO ₄ Lithium Schm Lithium chloride wL Lysoform Lysol Magnesium Schm	all all	20 SP		0 0	0 0	1 1	1 1	2 2	0 0		2 2			0 0	3 3
wL Lime-milk Lemon acid wL Lemonade Linseed oil + 3% H2SO4 Lithium Schm Lithium chloride Lysoform Lysol Magnesium Schm	all	20		0	0	1	1	2	0		2	3	2	Ű	3
Lemon acid wL Lemonade Linseed oil + 3% H ₂ SO ₄ Lithium Chloride wL Lysoform Lysol Magnesium Schm	all	SP		0	0	1	1	2	0		2	3	2		3
Lemonade Linseed oil + 3% H ₂ SO ₄ Lithium Schm Lithium chloride wL Lysoform Lysol Magnesium Schm		20	0	0	0	0	0	0	0	0	0	0			
Lemonade Linseed oil + 3% H ₂ SO ₄ Lithium Schm Lithium chloride wL Lysoform Lysol Magnesium Schm	5	SP 20	(0) 2	0	0	0	0	0	0	0	0	0	0	0	
Linseed oil + 3% H ₂ SO ₄ Lithium Schm Lithium chloride wL Lysoform Lysol Magnesium Schm	b konz.	20 SP	2	3	2	2	2	2	1	0	2	0	0	0	3
Linseed oil + 3% H ₂ SO ₄ Lithium Schm Lithium chloride wL Lysoform Lysol Magnesium Schm		20		(1)	0		_	0	0	0				Ű	
Lithium Schm Lithium chloride wL Lysoform Lysol Magnesium Schm		20	0	0	0		0	0	0	0	0	1	1	0	0
Lithium Schm Lithium chloride wL Lysoform Lysol Magnesium Schm		200	(0)	0	0		0	0	0	0	(0)			0	
Lithium chloride wL Lysoform Lysol Magnesium Schm	—	200	(3)	1	0			0	0	0				0	
Lysoform Lysol Magnesium Schm	ka	400	(0)	0	0 1LS	0	1	0	0	0				0	
Lysol Magnesium Schm	kg	20	3	0	0	0	1	0	0	0				0	
Magnesium Schm		SP		0	0			0	0	0					
Magnesium Schm	5	20	(2)	0	0		0	0	0	0					0
	5	SP	(3)	0	0			0	0	0					0
iviagnesium carbonate	+	650	(0)	3	3	3	3	3	3	3	3	3	3	0	3
	10 ges	SP 20	(0) (0)	0	0					1	0			0 0	1 1
Magnesium chloride tr	100	20	(0)	0L	0L					0				0	3
wL	5	20	3	0LS	0LS			0	0	0	2			0	2
wL	5	SP	3	2LS	2LS			0	0	0	2			0	3
wL	50	20	3	2LS	1LS			0	0	0				0	3
Magnesium hydroxyde	50	SP 20	3	2LS 0	2LS 0	0	0	0	0	0	0	(0)	0	0	3
Magnesium sulphate		20	(0)	0	0	v				v	v	(9)	<u> </u>	<u> </u>	3
5 · · · · · · · · · · · ·	0.10	20	2	0	0	1	1	1	0	0	0	3	0	0	0

		-	-											and and		Contraction and
Medium		Concentration %	Temperature (°C)	unlalloyed steels	18/8-Steel	18/8+Mo-Steel	Nickel	Monel 400 2.4360	Inconel 600 2.4816	Incoloy 825 2.4858	Hastelloy C 2.4819	Copper	Tombak	Bronce	Titaniuim	Aluminium
		10	SP	3	0	0					1				0	0
		25 50	SP SP	3 3	0 0	0 0				1	1 1				0	0
Malonate acid			20 50 100		1	1	1 1 3	1 1 3	1 1 3	1 1 3	1 1 3				1 1 3	1
Manganese dichloride		5 10 50	100 SP 20	3 3 3	0LS 0LS 0LS	0LS 0LS 0LS	1 1	1 1	1 1 0	0	0	3 3 3			0 0 0	0
Meat		50	SP 20	3	0LS 0	0LS 0			0			3			0	
Methyl acetate		60	20 SP	(0)	0	0					0					
Methyl alcohol		<100	20	(1)	0	0	0	0	0	0	0	0	0	0	0	0
Methyl chloride	tr fe	100 100	SP 20 20	(1) 0 2	1 0 0LS	1 0 0LS	0	0	0 0 0	0 0 0	0 0 0	0	0	0	0 0 0	1 0 3
Milk	fresh		20 70 20	(0) (1) (1)	0 0 0	0 0 0	0 2	1 2	0 0	0 0	0 0	(0)	(2)	0		0 (0)
Mercury	sour	100 100	SP 20 50	(3) 0 0	0 0 0	0 0 0	0 0	(3)	0	0	0	3	3	3		(1)
Mercury chloride		100 0.1 0.74	370 20 SP SP	3 3 3	0S 1S 2S	0S 0S 2S	(0) 0 1 1	3 3 3	0 1	0 0 0	0 0 0 0 0	3 3	3 3	3 3		3 3 3 3
Mercury cyanide	wL	10	<80 20	(3)	0	0	3	(3)	3	2	1 0	3	3	3		3
Mercury nitrate			20	(3)	0	0		(3)	•	_	Ű	3	3	3		3
Molybdenum acid	wL	10	25								1					
Monochloracetic acid	wL	all 30	20 80	3 3	3 3	3 3	(1) (1)	2	(1) (2)	3	1	3 3	3	3	3	3 3
Mustard			20	2	0L	0L										
Natural gas		100	20		0	0		0		0	0	0	0	0		
Naphtene Nickel chloride		100 10	20 20	0	0 1LS	0 1LS	0	0	0	0	0	3	3	1		0
Thore onlong		10 10 80	<60 <95	3	1LS	1LS			0	0	0	0	0			
Nickel nitrate	wL	<10 10 <100	20 25 30	3 3 3	0 0 0	0 0 0	3 3 3	3 3 3	0 0 3	0 0 0	0 1 1	3 3 3			0 0 0	3 3 3
Nickel sulfate	wL	<60	20 SP	333	0	0	(3) (3)	(1) (1)	(1) 0	0	(1) 1	0	2	1	-	
Nitric acid		10 1	25 20	3	0	0	2	2 0	2	0	0	0	3	3	0	3
		1	SP	3	0 0	0	2	2	2	1	0	3	3	3	0	2
		10 10	20 65	3 3	0	0 0	2 3	1 2	2		0 0	3 3	3 3	3 3	0 0	2
		10	SP	3	0	0	3	3			1	3	3	3	0	
		15 15	20 SP	3 3	0 0	0 0					(1) 3				0 0	
		25	20	3	0	0					0				0	
		25	65	3	0	0					0				0	
		25 40	SP 20	3 3	0 0	0 0					3 0				0 0	
		40	65	3	0	0					1				0	
		40	SP	3	0	0					3				0	
		50 50	20 65	3 3	0	0					0 1				0 0	
		50	SP	3	1	1					3				0	
		65 65	20 SP	3 3	0 (0)	0 2					0 3				0	
Nitric acid		65 90	20	3	(0)	0					3				0	
		90	SP	3	2	2					3				0	
		99 99	20 SP	(1)	1 3	2 3					3 3				0 0	
		99 Konz	0r		э	3					5				0	
		-	20	3	0	0				_		_			_	0
Nitro acid		5 5	25 20	3	0	0			1	0		2			0	2
		5	75			1	L	<u> </u>	L							_
Nitro benzene Nitro gas	tr	100 alle	100 540				1	1	1	1	1 0	3	3			0
	u	ane	J40			1					U U	3	3		•	

			-	-										No.		
Medium		Concentration %	Temperature (°C)	unlalloyed steels	18/8-Steel	18/8+Mo-Steel	Nickel	Monel 400 2.4360	Inconel 600 2.4816	Incoloy 825 2.4858	Hastelloy C 2.4819	Copper	Tombak	Bronce	Titaniuim	Aluminium
Nitrogen		100 100 100 100	20 200 500 900	0 0 0 1	0 0 1	0 0 1	0 0 3 3	0	0		0	0 0	0	0	0 0	0 0
Nitrogen oxide NOx	tr fe	100 100 100	20 20		0	0	3	3	3	0	0	0			0	0 3
Nitrohydrochlorid acid			20	3	3	3L	3L	3	3	3	3	3	3	3	2	3
Novocaine Oil			20 20	0	0	0						0		0		0
			SP	(0)	0	0						(0)		(0)		(1)
Oil acid, tech.			20 150 180 235	(1) (2) 3 3	0 0 1 2	0 0 0 0		0 0 1	0 0 0 (0)		0 (0) (0) (0)	0 (2) 3 3	1 1 (1)	(0) 1 3 3		0 0
Oxalic acid	wL	2 5 5 10 10 30 30 50 50	20 80 20 80 20 SP 20 SP 20 SP	3 3 3 3 3 3 3 3 3 3 3 3	0 0 1 3 3 3 3 3 3	0 0 0 0 0 2 3 3 3 3 3	2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 0 1 1 1 1	0 0 0 0 0 1 0 1	0 (0) 1	2	1	0 3 0 3 2 3 3 3	0 1 2 3 (3)
Oxygen		100 100 100	-185 20 500	(0) 0 (1)	0 0 0	0 0 0		0 0 0				0 0 3	0 0	0 0 3		
Palmitic acid		100	20	(.)	0	0	0	0	0	0	0	1	2	1	0	0
Paraffin	Schm		120	(0)	0	0	0	0	0	0	0	0	0	0	0	0
Perchloroethylene	wL	100 100	20 SP	0 (3)	OL OL	OL OL	0 0	0 0	0 0	0 0	0 0	0 (0)	1 (0)	1 (0)	0 0	3 3
Petrol	tr tr	100	20 SP	0	0	0	0	0	0	0	0	0	0	0	0	0
Petroleum (kerosine)			20 100	0 0	0 0	0 0	0 (2)	0 0	0 0	0 0	0 0	0 (0)	1 (1)	0 (0)	0 0	0
Petroleum ether		100 100	20 SP		0 0	0 0										
Petrolium / fuel		100 100	20 SP	0	0 0	0 0					0 0	0	0	0		
Phenic acid (Phenol)	pure wL raw	100 90 90 90 50 50	SP SP 20 SP 20 70	3 (1) 3 (1) 3	1 1 0 1	0 0 0	0 0 (1) (1)	0 (0) 0 (0) 0 0		1 0	1 1 0 1 0 1	1	1	1	0 0 0	3 3 3 0 1
Phenolsulphonic acid		30 30	20 120	(0)	0	0				0 0	0 0					
Phosphor	tr		20	0	0	0										0
phosphor penta chloride	tr	100 100	20 60				(0) (0)	(0) (0)							1 1	
Phosphorous acid chem. pure	wL	1 5 10 30 30 50 50 80	20 20 20 80 20 SP 20 SP SP	3 3 3 3 3 3 3 3 3 3 3 3	0 0 0 0 1 0 2 3	0 0 0 0 1 0 1 3	0 0 2 0 (2) 0 (2) 3	1 1 1 (1) 0 3	0 1 1 0 3 (0)	0 0 0 2 1	0 0 0 0 1 0 1 2	2 2 2 1 2	3 3 3 1 2 (0) (0)	3 3 3 1 (1)	0 0 1 0 3 1 3 3	3 3 3
Phosphorous acid technical		<30 <30 50 50 85 85	25 SP 25 SP 25 SP	3 3 3 3 3 3 3 3 3 3 3 3 3 3	0 0 3 0 3	0 0 2 0 3	-		<u> </u>		0 1 0 2 0 1				1 3 1 3 3 3	
Pineapple juice			25 85		0	0	0 1	0 1	0 0	0 0	0					
Pit water (sour)			20	3	0	0			0	0		3	2	1		2
Potassium	Schm	100	100 600 800	0	0 (0) (0)	0				0 0 0						0 0 0
Potassium acetate	Schm	100	292	3	0	0		1	l			3	l	l	1	

														No.		
Medium		Concentration %	Temperature (°C)	unlalloyed steels	18/8-Steel	18/8+Mo-Steel	Nickel	Monel 400 2.4360	Inconel 600 2.4816	Incoloy 825 2.4858	Hastelloy C 2.4819	Copper	Tombak	Bronce	Titaniuim	Aluminium
	wL		20	(1)			0	0	0	0	0	1		1		
Potassium bi-chromate	wL	25	40	3	0	0	1	1	1	1	1	3	3	3		0
Potassium bi-fluoride	wL	25 ges	SP 20	3	0 0L	0 0L					1	3	3	3		(0)
Potassium bi-tartrate	wL	kg	20	3	0	0	0									0
(Cream of tartar)	wL	hg		3	3	1	1									1
Potassium bromide	wL	5 5	20 30	3 3	OL OL	OL OL	0 0	0 0	1	1	0	0	0 0	0 0		1 2
Potassium carbonate	Schm	100	1000	3	3LS	3LS		0				-	-			3
	wL wL	50 50	20 SP	2 3	0 3	0 3	0	0 0	0 0	0 0	0 1	1	3 3	1	0	3
Potassium chlorate	wL	5	20	(2)	0L	0	1	1	1	0		(1)	(1)	(1)	0	0
		ges	SP	3	0L	0	3	3	3	0	0	1			0	1
Potassium chloride	wL	5 30	85 20	(2) (1)	0L 0L	OL OL	1 0	1 0	2 0	0 0	1 1	1 1	2 2	1 1	0 0	3 3
-		30	SP	2	1L	0L		0	0	0	1	(2)	(2)	(1)	0	3
Potassium chromate	wL	10 10	20 SP	0 (1)	0 0	0 0	0 0	1	0	0	0	0	0			0 0
		<30	30	(1)	0	0	0	1	0	0						Ū
Potassium chrom. sulph.	wL	ges	20 SP	3 3	1 3	0 3	1 2	0 (1)	0				3			3 3
Potassium cyanate	Schm	ges 100	750	3	3	3	2	3					3			3
	wL	10	20	(0)	0	0		(1)				3	3	(0)		1
Potassium cyanide	wL	10	SP	3	0	0	_					3	3	3		3
Potassium hydroxide	wL	20 20	20 SP	0 0S	0 0S	0 0S	0 0	0 0	1	0 1	0 1	1 3	2	1	0 0	3 3
Potassium hydroxide		50	20	0S	0S	0S	0	0	1	1	0				-	3
		50 hg	SP	0S 0S	3 0S	3 0S	0	0	3	1	1 1	3			3	3 3
	Schm	100	360	3	3	3	0		3		3				3	3
Potassium hypochloride	wL	all	20	3	2L	0L	3	3	3	3	0				0	3
Potassium iodide	wL	all	SP 20	(0)	3L 0L	3L 0L	3	3	3 1	3	1 0				0	3 3
			SP	(0)	0L	0L	3	3	1	0	0					3
Potassium nitrate	wL	25 25	20 SP	0	0 0	0 0	1	1 1	1 1	0	1 1	0 0	0 (0)	0		(0) 0
(Saltpetre)		ges	20	0	0	0	1	1	1	0	1	0	(0)			0
-		ges	SP	2	0	0					1					
Potassium nitrite Potassium oxalate		all all	SP 20	1	0	0	1 0	0	0	1 0	0	1	1	1		
		all	SP		0	0	0		0	0	0					
Potassium perchlorade	wL	25 75	20 50								1 1					
Potassium permanganate	wL	10	20	0	0	0	0	(1)			0					
		all	SP	3	1	1	0	1	1	0	1	0			0	0
Potassium persulphate Potassium sulphate	wL	10 10	25 25	(3)	0	0	(3)	(3) (1)	0		0	(3)	(3)	0	0	(3) (1)
rolassium suphale		all	SP		0	0		(1)				0	1	0	0	(1)
	wL	5	20	3 3	2 3	0									0	
Propane	wL	5 100	90 20	(0)	3	3	0	0	0	0	0	0	0	0	3	0
Pyrogallol		all	20	(0)	0	0	-				0	-	-	(0)	-	0
Quinine-bi-sulphate	tr	all	100 20	3	(0) 3	0		1		0	1 0	0		(0)	0	0
Quinine sulphate	tr		20	3	0	0		1		0	0	0			0	
Resina (natural)		100	20		0	0		0				0	1	0		
Salycilic acid	tr	100 100	300 20	3	0L 0	0L 0	0	0				1		1		0
Salycilic aciu	wL	100	20 80	(3)	0	0	0	0				(1)		(1)		0
		ges	20	(3)	0	0	0	0								1
Sea water			20	(1)	0LS	0LS	0	0	0	0	0	0	(0)	0	0	(0)
			50	(1)	1LS	0LS	0	0	0	0	0	(0)	(1)	0	0	(0)
Sewages (w.o.H ₂ S0 ₄)			SP <40	(2)	2LS 0	1	0	0	0	0	0	(1) 2	(1) 3	(0) 2	0	(1) 3
(with H_2SO_4)			<40		0	0		Ŭ	Ŭ	Ŭ	Š	3	3	3	0	3
Silver bromide		100	20	3	2LS	2LS	1			0	0	3	3	3	0	3
Silver chloride	wL wL	10 10	25 20	3	0LS 3LS	0LS 3LS				0	0	3	3	3	0	3
Silver nitrate	wL	10	20	3	0	0	3	3	1	0	1	3	3	3	0	3
	wL wL	10 20	SP 20	3 3	0 0	0 0	3				1				0 0	
I	VV L	20	20	5	U	U	I	1	I	I		1	1	I		ı 1

														Sale P		
Medium		Concentration %	Temperature (°C)	unlalloyed steels	18/8-Steel	18/8+Mo-Steel	Nickel	Monel 400 2.4360	Inconel 600 2.4816	Incoloy 825 2.4858	Hastelloy C 2.4819	Copper	Tombak	Bronce	Titaniuim	Aluminium
	Schm	100	250	2	0	0										
Sodium		100 100 100	20 200 600	0 0 (3)	0 0 0	0 0 0										0 (1)
Sodium acetate	wL	10 ges	20 SP	(3) (2)	0 0	0	0	0	0	0	0 (1)				0 0	0
Sodium aluminate	wL		20	0	0	0										
Sodium bi-carbonate	wL	10 10 20	20 SP SP	0 (1)	0 0	0 0	1	1	1	0	0 1 1	1	2	1	0	0
Sodium bi-sulphite		10 10 50 50	20 SP 20 SP	3 3 3 3	0 2 0 0	0 0 0	0 0		0 (0)		1 1	3 3	1 1	(0)		(0) 3
Sodium bromide	wL	all all	20 SP	3 3	3LS 3LS	2LS 2LS					0 1					3 3
Sodium carbonate	wL	1 1 kg kg	20 75 20 SP	1L 3	0 0 0	0 0 0	0	0			0 0	1	2	1	0	3 3
Sodium chlorate	Schm	30 30	900 20 SP	3 2 3	3 0LS 0LS	3 0LS 0LS		(0)							0 (0)	
Sodium chloride	wL	3 3 10 10 kg kg	20 SP 20 SP 20 SP	(1) (2) (2) (3) (2) (2)	0LS 0LS 0LS 0LS 0LS 2LS	OLS OLS OLS OLS OLS	1 1 1 1 1	0 0 0 0 0	1 1 1 1 1		0 1 0 1 0	1	2	1	(0) (0) (0) 0 1 0 (0)	3 1 2 2
Soap	wL wL wL wL	1 1 10 100	20 75 20	0	0	020	0 0 0 0	0	0			0 0 3	1 1	0 0	(0)	0
Sodium citrate	wL	3.5	20		0	0	1		1	0	0	0			0	3
Sodium cyanide	Schm wL	100 ges	600 20	(1) 3		0	0	3 3				3 3	3 3	3 3	0	3 3
Sodium dichromate Sodium fluoride	wL	ges 10	20	(0)	0LS	0 0LS	0		0	0	0	3	3	3	0	
		10 kg	20 SP 20	(0) (0)	0LS 0LS	0LS 0LS	-		0	0 0 0	0 0 0		(3)			
Sodium hydroxide	fest wL	100 5 25 25 50 50	320 20 SP 20 SP 20 SP	(3) 0 2 0 2	3 0 0S 1S 1S 2S	3 0 0S 1S 1S 2S	0 0 0 0 0 0	1 0 0 0 0 0	0 0 0 0 0 0	0 0 1 0 1	0 0 1 0 1	0 1	1 2	(0) 1	0 0 0 0 0 0	3 3 3 3 3 3 3 3
Sodium hyposulfite		all all	20 SP	2 2	0 0	0 0	1 1	1 1	1 1	0 0	0 1	2 2			0 0	
Sodium nitrate	Schm wL wL wL wL	100 5 10 30 30	320 20 20 20 SP	3 (2) 1 (1)	0 0 0 0	0 0 0 0	1 1 1 1	1 1 1	0 0 0	0 0 0	3 0 1 1	1	2	1	0	0 0 0 0
Sodium nitrite	wL	100	20		0	0	2	2	2	1		0			0	0
Sodium perborate Sodium perchlorate	wL wL	ges 10	20 20	(1) (2)	0 0LS	0 0LS					1 0				1	
Sodium peroxide	wL	10 10 10	20 SP 20	(2) (3) 3	0LS 0LS 0	0LS 0LS 0	0	0	1	1	0	3			3	3
Sodium phosphate	wL wL	10 10 10	SP 20 50	3	0 0 0	0 0 0	1 0 (0)	0	1	1	1	3 1	2	1	3 0	3 (0) (0)
Sodium pochloride (javel water)	-	10 10 10	SP 25 50	(1) (3)	0 1LS 1LS	0 OLS OLS			(0) (0)	(0) 1	(0) 1	3 2	3	(1)	0 0	(1) 3 3
Sodium salicylate (Aspirin)	wL	ges	20		0	0	0	0	0	0	0	0	4	0	0	(2)
Sodium silicate Sodium sulfate	wL	ges 10 10 30 30 kg	20 20 SP 20 SP	3 3 3 3 3	0 0 0 0 0	0 0 0 0 0	0	0 0 1	0 0 1	0 0 0	0 1 1 1 0	0	1 0	0	0 0 0	(2) 0 0

Medium Million	Aluminium 3 3
Sodium sulfide wL 20 20 3 0 0 1 3 0 0 1 2 1 2 0 20 SP 3 0 0 1 3 0 0 1 2 1 2 0 50 SP 3 0 0 3 (0) 1 1 0 0 wL kg 20 3 (0) 10 1 3 0	3 3 3
20 SP 3 0 0 1 0 0 50 SP 3 0 0 3 (0) 1 0 0 wL kg 20 3 (0) 1 1 3 0 0 hg 3 3 1 1 0 0 0	3 3
Sodium sulfite wL 10 20 (3) 0	0
Sodium thiosulfate wL 1 20 1 0	0 0 1
Sodium triphosphate wL 10 20 10 <td></td>	
Soft soap 20 0 0 0 Spinning both 40 90 2 0 0 0 0	
Spinning bath <10 80 3 2 1 0 0 <10	3 3
Steam fe 100 2 0<	1 1 1 1
Stearic acid 100 20 1 0 0 0 0 0 0 0 0 1 2 1 0 100 80 3 0 0 0 0 0 0 1 2 1 0 100 130 3 0 0 1 0 0 0 1 2 1 0	0 3 0
Suggar wL 20 1 0<	0 0
WL SP I 0 0 0 0 1 0 0 Sulphite lye 20 0	
Sulphur tr 100 20 0 0 0 0 0 1 <th< td=""><td>0</td></th<>	0
Sulphur chlorine tr 100 30 0 0LS 0 0 (0) (0) (0) 0	3
tr 100 SP OLS OLS 0 Image: Constraint of the state of the stat	0 1 0
Sulphur acid 1 20 3 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 <	1 1 1 2 2 3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 0
Sulphur monoxyde 100 20 1 0 0 (0) (0) 1 0 1 1 0 1	0
Sulphur trioxide SO3 fe 100 20 3 3 2 0 00 00 3	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
Sulphurous acid wL 1 20 3 0 2 2 1 0 1 1 1 0 H ₂ SO ₃ wL 5 20 3 0 0 2 1 0 1 1 1 0 wL 10 20 3 0 0 1 0 1 1 1 0 wL ges 20 2 0 0 2 0 1 1 1 1 0	1 1 0 3
wL ges 20 2 0 0 2 0 1 Tannic acid wL 5 20 2 0 0 0 0 1 0 1	0

													Sale Party		A CONTRACTOR OF A CONTRACTOR A
Medium	Concentration %	Temperature (°C)	unlalloyed steels	18/8-Steel	18/8+Mo-Steel	Nickel	Monel 400 2.4360	Inconel 600 2.4816	Incoloy 825 2.4858	Hastelloy C 2.4819	Copper	Tombak	Bronce	Titaniuim	Aluminium
	5 10 10 50	SP 20 SP 20	3 2 3 3	0 0 0 0	0 0 0 0	1	1 0	1 0	0	0	0	1	0	0	0
Tar	50	SP 20	3	0	0			0	0	0	0	1	0	0	1
Tin Schm Schm Schm Schm	100 100 100 100	SP 300 400 500 600	2 2 3 3	0 0 1 3 3	0 0 1 3 3	3	3				0	1 3	0	0 0 1	1 3
Tin chloride	100	20 SP	3 3	1LS 3LS	1LS 3LS	3	3			0 1					3 3
Titaniuim sulphate	10 10	20 SP								1					
Toluene	100 100 100	20 SP	0	0	0		0				0	0	0		0 0
Tri-chloro acetic acid	>10 50 50	20 20 100		333	333			0	0	0 0 1					
Trilene tr tr tr fe fe	100 100 100	20 70 SP 20 SP	0 2 3	0L 0L 0L 1L	0L 0L 0L 0L 0L	0 0 0 0				0 0 0 0	0 1 1 1	0 1 2 2	0 1 1 1		0 3 3 3 3
Trinitrophenol		20 200	(0) 3	0	0	0	0	0	0 0	0	(0)	(0)	(0)	0	0
Trinitrophenol Schm wL	100 3 25 ges	150 20 20 20	3 3 3 3	0 0 0	0 0 0	3	(1) 3	3	2	0	3	3	3 3		3 1
Turpentine oil	100 100	20 20 SP	0	0	0	5	5	5	2	0	0 0	1 1	0 0	0 0	0 0
Tyoglykolacid		20 SP			1										
Urea	100 100	20 150	0 3	0 1	0	0	0 1	3		0 1				0 0	0 3
Uric acid wL wL	konz konz	20 100		0 0	0 0		0 0	1 1	0 0	0 0	0 0			0 0	3 3
Urine		20 40		OL OL	OL OL	0 0	0								1
Vaseline	100	≤SP	0	0	0										0
Vegetable soup Vinegar	SP	20		0	0						1	3	1		0
Villegal		SP		0	0						3	3	3		3
Vinegar acid	10 10 20 50 50 80 80 99 99	20 SP 20 SP 20 SP 20 SP 20 SP	33333333333333333333333333333333333333	0 2 0 0 3 0L 3L 0L 1L	0 0 0 0 0 0 0 0 0 0 1 1	2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 2 2 1	0 0 0 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0 0 0	3	3	0	0 0 0 1 0 1 0 0 0	0 2 0 2 0 2 0 2 0 2 0
Vinyl chloride		20 400	0	0 1	0 1					0 1			0		
Water H ₂ 0 dest. dest. River water Tap water hard Tap water soft Tap water alkaline Pit water sour Pit water sour Mineral water Rainwater flowing Rainwater still Sweat		20 SP ≤SP ≤SP 20 20 20 20 20 20 20 20 20 20 20	1 0 2 1 1 2 1	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 1 2 0	0	0 0 0	0 0 0	0 0 0	0 0 0 1 2 0	0 1 2 3	0		0 1 1 3 2 3 1 3 3 3

														Page P		a second second
Medium		Concentration %	Temperature (°C)	unlalloyed steels	18/8-Steel	18/8+Mo-Steel	Nickel	Monel 400 2.4360	Inconel 600 2.4816	Incoloy 825 2.4858	Hastelloy C 2.4819	Copper	Tombak	Bronce	Titaniuim	Aluminium
Sea water			20 SP	1 2	0LS 2LS	0LS 1LS	0 0	0 0	0 0	0 0	0 0	0 1	0 1	0 0	0 0	1 3
Water condensate, pure plus CO_2 plus O_2 plus C_1 plus NH_3			<200 <200 <200 <200 <200	0 2 2 2 2	0 2LS	0 2LS	0 1	0 1 0 0	0	0	0 1 1	0 0 0 2	0 1 3	0 0 0 2	0	
Wattle	wL		20 SP	2 3	0 0	0 0		0 0	0 0	0 0						0
Whiskey			20													3
Wine acidity	WL WL WL WL WL WL WL WL	3 10 25 25 50 50 75 75 all	20 20 SP 20 SP 20 SP 20 SP	1 3	0 0 0 1 0 1 0 2	0 0 0 0 0 0 0 2	1 2	1 2 0 1	1 2 0 0	0 0	0 0 1 0 1 0 1 0 1	0 3	2 3	0	0 0 0 0 0 0 0 0 0	0 2 2 3 2 3 2 3 3 3 3
Wine vinegar	wL	5	20	0	0	0			0	0	0	1	1	1		0
Wine, white & red			20 SP	2 3	0 0	0 0	2 3		0 0	0 0	0 0		3 3	3 3		3 3
Xylene			20 SP	0 0	0 0	0 0										0 0
Yoghurt					0											3
Zinc	Schm	100	500	3	3	3	3	3								3
Zinc chloride	wL wL	5 5	20 SP	3 3	3LS 3LS	2LS 2LS	1 1	1 2	1 2	0 0	0 1	2 2	3 3	2 2	0 0	3 3
Zinc silicone sulfide	wL wL wL wL	30 30 40 50	20 65 20 65								0 2 0 3					
Zinc sulphate	wL wL wL wL	10 25 hg hg	20 SP 20 SP	2 3	0 0 0 0	0 0 0 0	1 1 1	1 1 1	1 1 1	0 0 0	0 1 1 1	1 2 1	3	1	0 0 0	1 3 1 3
Zyanide baths			25												0	