

BOA Kompensatorenratgeber

Kompensatoren Ratgeber

Inhalt Modul 1

1 Inhalt Modul 1	2
2 KOMPENSATOREN ALLGEMEIN	3
2.1 Die Hauptelemente und ihre Funktionen	4
2.2 Der Balg und seine Funktion	4
2.2.1 Der ein- bis fünflagige Balg, hergestellt mittels hydraulischer Komplettumformung (HUB)	5
2.2.2 Der mehr- oder viellagige Balg, hergestellt mittels Elastomer-Einzelwellenumformung (EUB)	6
2.2.3 Berechnung des mehrlagigen Balges	7
2.2.4 Kriterien für die problemorientierte Balgauswahl	7
2.3 Kompensatoren in unverspannter Ausführung	8
2.4 Kompensatoren in verspannter Ausführung	8
2.5 Das innere Leitrohr (Schutzrohr)	8
2.6 Die Anschlussarten	9
2.6.1 Kompensator zum Einschweissen	9
2.6.2 Kompensator mit geschweisster Flanschverbindung	9
2.6.3 Kompensator mit loser Flanschverbindung	9
2.7 Ermittlung von Bewegungsgrössen	10
2.8 Kriterien für die Auswahl der Kompensationsarten	11
2.8.1 Natürlicher Dehnungsausgleich	11
2.8.2 Dehnungsausgleich mit unverspannten Kompensatoren	11
2.8.3 Dehnungsausgleich mit verspannten Kompensatoren	12
2.8.3.1 Dehnungsausgleich mit Angularkompensatoren	12
2.8.3.2 Dehnungsausgleich mit Lateralkompensatoren	12
2.8.3.3 Dehnungsausgleich mit druckentlasteten Kompensatoren	12
2.9 Festpunkte, Rohrführungen und Hänger	12
2.10 Nennbedingungen	14
2.11 Werkstoffe	16
2.12 Vorgehen in der Praxis	17
2.12.1 Datenanfrage/ Checkliste	17
3 QUALITÄTSSICHERUNG	19
3.1 Zulassungen / Zertifikate	19
3.2 Prüfungen / Labor	20
4 ANWENDUNGEN	21
4.1 Diesel- und Gasmotoren	21
4.2 Raum- und Luftfahrt	21
4.3 Stromverteilung	22
4.4 Haustechnik	22
4.5 Wasserbau	22 23
4.6 Anlagenbau, allgemeiner Rohrleitungsbau	23
4.7 Pumpen und Kompressoren 4.8 Gasturbinen	23
4.0 Gastulbilleli	
5 ANHANG/ NORMEN	24
5.1 Symbole im Rohrleitungsbau	24
5.2 Tabelle über Richtanalysen und Festigkeitskennwerte	25
5.3 Internationale Normen/ Vergleichstabelle	27
5.4 Umrechnungstafeln	28
5.4.1 Druck	28
5.4.2 Weitere Umrechnungstabellen	29
5.5 Korrosion	31
5.5.1 Technische Information	31
5.5.2 Tabelle der Widerstandsfähigkeit gegen Korrosion	33

BOA Kompensatorenratgeber

2 Kompensatoren allgemein

Kompensatoren in ihren verschiedenen Bauformen dienen vorwiegend dem Bewegungsausgleich in Rohrleitungen, an Maschinen und Apparaten. Bei den auszugleichenden Bewegungen handelt es sich immer um Relativbewegungen zwischen zwei Anlagenteilen, die durch Wärmedehnungen, Montageversatz, Massenkräfte oder Fundamentsenkungen hervorgerufen werden. Kompensatoren sind universell in fast allen Industriebereichen einsetzbar. Besonders im Rohrleitungsbau ermöglichen sie raumsparende Leitungsführungen zum Transport vielfältiger Medien wie Heisswasser, Dampf, Benzin, Wärmeträgeröle, heisse Gase sowie chemische Produkte verschiedenster Art. Ein weiteres Anwendungsgebiet ist der Apparate- und Motorenbau, wo die Kompensatoren bei Dieselmotoren, Turbinen, Pumpen oder Kompressoren Schwingungen und Körperschall abkoppeln und so deren Übertragung auf die weiterführenden Leitungen verhindern. Gleichzeitig ermöglichen Kompensatoren den nahezu kraft- und momentenfreien Anschluss von Rohrleitungen an empfindlichen Armaturen, Apparaten und Maschinen (z.B. an Turbinenstutzen). Darüber hinaus dienen Kompensatoren als Montagehilfen für Rohrleitungselemente, wie z.B. Ventile, wo sie als Ausbaustücke bzw. als Ausbaukupplungen zum Einsatz kommen.

Übersichtstabelle Kompensatoren

		10 P. Page 177, 2010	Nimmt .		Ana	Bewegung	Late	ral
Bauart		Ausführung	Druckkraft auf	Axial	Eine Ebene	Mehrere	Eine Ebene	Mehrere Ebener
	Nicht druck entlastet, mit Innendruck beaufschlagt		Nein	х	(X)	(X)	(X)	(X)
Axial- Kompen- lator	Nicht druck- entlastet, mit Außendruck beaufschlagt		Nein	х	(X)	(X)	(X)	(X)
	Gerade Anordnung, druckentlastet		Ja	Nein				
Angular-	Einfachgelenk		Ja		×			
Angular- Kompen- sator	Kardangelenk		Ja		x	х		
	Zwei Zugstangen, gelagert in Kugelscheiben und Kegel- pfannen	ţ iii	Ja		x		x	х
	Zwei Zugstangen, mit Gelenk- bolzen (in einer Ebene)		Ja				x	
Compen-	Mindestens drei Zug- stangen		Ja				х	х
	Einfaches Doppelgelenk		Ja		х		×	
Lateral-Kompan-dator S	Kardanisches Doppelgelenk		Ja		х	х	x	х
Universal- Compen-	Unverankert, ein oder zwei Bälge		Nein	х	x	х	x	х
	Druckentlastet		Ja	x	The second secon		x	х

Die Tabelle zeigt eine Aufteilung der Kompensatoren nach den hauptsächlichsten Funktions- und Konstruktionsarten mit den möglichen Kompensationsbewegungen. Es ist besonders zu beachten, dass alle nicht verspannten Ausführungen unter Druckbeaufschlagung eine Druckreaktionskraft aus dem Produkt von **Druck mal Kompensatorquerschnitt** auf die Leitung ausüben und diese daher besonders fixiert und geführt werden müssen.

2.1 Die Hauptelemente und ihre Funktionen

Wie die obige Übersichttabelle zeigt, gibt es je nach Kompensationsaufgabe eine Vielzahl von unterschiedlichen Kompensatorenausführungen.

Die Kompensatoren bestehen in der Regel aus folgenden Bauteilen:

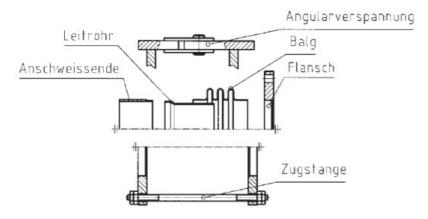
Bälge:

Sie stellen das flexible Hauptelement des Kompensators dar und werden je nach Anforderung mit unterschiedlicher Wellen- und Lagenzahl ausgeführt.

Leitrohre:

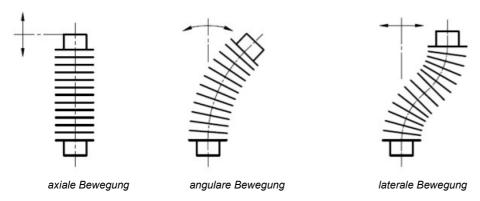
Sie dienen zum Schutz des Balges vor dem strömenden Medium und zur Reduzierung des Durchflusswiderstandes.

Schutzrohre, Führungsrohre:


Sie dienen dem Schutz des Balges vor mechanischer Beschädigung bzw. je nach Bauart zur Führung des Kompensators gegen seitliches Ausweichen (Knicken).

Anschlussteile:

Sie dienen der Verbindung der Kompensatoren mit der weiterführenden Rohrleitung. Je nach Ausführungen stehen folgende Anschlüsse zur Verfügung: Schweissenden, Lötenden, Flansche, Gewindenippel.


Verspannung (nur bei Lateral-, Gelenk- oder druckentlasteten Typen):

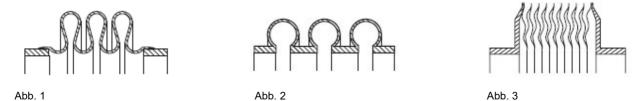
Die Verspannung überträgt die Druckreaktionskraft über den Balg bzw. bei mehrbälgigen Ausführungen über die Bälge. Gleichzeitig bestimmt die Verspannung die kinematische Beweglichkeit des Kompensators durch den Einbau von unterschiedlichen Gelenklagerarten, wie z.B. Kugelgelenke, einachsige Lager mit Bolzen, Kreuzgelenk- oder kardanische Lagerungen.

Durch die Kombination der obigen Hauptelemente lassen sich je nach Kompensationsaufgabe die vielfältigen Typen und Bauarten erzeugen, die in den nachfolgenden Standardprogrammen der BOA Group nach Typen, Nennweiten, Nenndruckstufen und Dehnungsaufnahmen geordnet sind.

2.2 Der Balg und seine Funktion

Kernstück eines jeden Kompensators ist der Metallbalg(*), der durch seine Wellengeometrie und dünnwandige Ausführung eine grosse Beweglichkeit in axialer, lateraler oder angularer Richtung sowie eine hohe Druckbeständigkeit aufweist. Damit er als Dehnelement verwendbar ist, muss er folgende Basisbedingungen erfüllen:

(*) Ausnahmen stellen die Gummi-Kompensatoren mit ihren besonderen Einsatzbedingungen dar.



Er muss

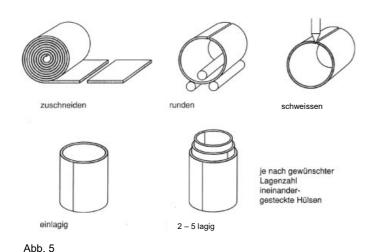
- den Betriebs- und Probebedingungen (Druck, Temperatur) des Rohrleitungssystems standhalten,
- gegenüber inneren und äusseren Einflüssen korrosionsbeständig sein,
- flexibel Dehnungen und ggf. Schwingungen aufnehmen können und dabei eine geforderte Lebensdauer bzw. Lastspielzahl erreichen und

 und
- ausreichende Knickstabilität aufweisen.

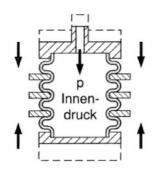
Einen guten Kompromiss zwischen den gegenläufigen Anforderungen nach grosser Flexibilität bei gleichzeitig hoher Druckfestigkeit stellen lyraförmige Wellen nach Abb. 1 dar, die als bevorzugte Wellenform für Standardbälge Verwendung finden. Ihre Geometrie lässt sich durch Veränderung der Radien, Profilhöhe, Lagenzahl und Wandstärke den jeweiligen Druck- bzw. Dehnungsanforderungen anpassen.

Demgegenüber besitzt ein torusförmiges Wellenprofil nach Abb. 2 eine hohe Druckfestigkeit bei eingeschränkter Beweglichkeit, wohingegen ein membranförmiges Wellenprofil nach Abb. 3 höchste Flexibilität bei nur geringer Druckfestigkeit aufweist.

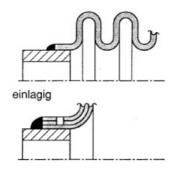
Innerhalb der BOA Group werden alle Profilformen hergestellt und können auf Anfrage geliefert werden.


2.2.1 Der ein- bis fünflagige Balg, hergestellt mittels hydraulischer Komplettumformung (HUB)

Die Bälge der BOA BKT sind traditionell einlagig, wobei bei erhöhten Druck- und Bewegungsanforderungen mittels ineinander gesteckten Hülsen bis zu fünf Lagen hergestellt werden können.


Abb. 4

Die Balgzylinder entstehen aus Bandmaterial nach den in Abb. 5 dargestellten Arbeitsschritten: Zuschneiden, Runden und Längsnahtschweissen.



Der Balg wird gemäss Abb. 6 aus einem oder mehreren, ineinander gesteckten dünnwandigen Zylindern mittels hydraulischer Komplettumformung hergestellt.

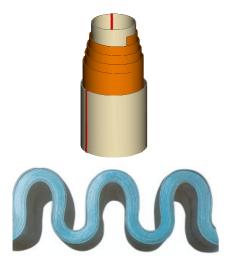

2 – 5 lagig mit Entlastungsbohrung

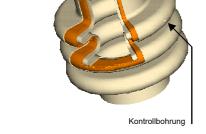
Abb. 6

Um sicherzustellen, dass die innere Balglage dicht mit dem Anschweissende verschweisst ist, werden bei Bälgen mit mehr als einer Lage die äusseren Stützlagen mit einer Entlastungsbohrung versehen. Auf diese Weise ist es möglich, mittels einer Dichtheitsprüfung die Dichtheit der Innenlage zu prüfen.

2.2.2 Der mehr- oder viellagige Balg, (2-16 Lagen), hergestellt mittels Elastomer-Einzelwellenumformung (EUB)

BOA AG als Erfinder des mehr- oder viellagigen Balges hat diese Technik immer weiterentwickelt und fertigt Bälge aus austenitischen und anderen hochwertigen Materialien, wobei die Lagenzahl bei den Standardprodukten zwischen minimal 2 bis maximal 16 variieren kann.

Aus dem dünnwandigen Bandmaterial werden mittels Längsschweissnaht zwei dichte Innenrohre und ein Aussenrohr hergestellt. Dazwischen wird in Abhängigkeit von Druck und Temperatur ab einer gewissen Lagenzahl Bandmaterial spiralförmig aufgewickelt und zu einem kompakten Zylinderpaket zusammengesteckt (siehe Abbildung links). Die einzelnen Zylinder können aus unterschiedlichen Materialqualitäten bestehen, um z.B. kostengünstige Lösungen für erhöhte Korrosionsbeständigkeit zu erhalten.


Durch Herauspressen von ringförmigen Wellen mittels Elastomer-Kaltverformung entsteht der mehrlagige Balg mit den besonders günstigen technischen Eigenschaften:

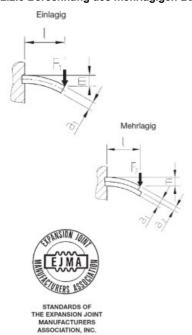
- hohe Flexibilität
- kurze Baulänge
- geringe Verstellkräfte
- grosse Hubkapazität
- kleine Wellenhöhen
- schwingungsdämpfend

Diese Vorteile bringen wirtschaftliche Lösungen, wie z.B. geringe Anzahl an Kompensatoren, kleine Abmessungen an Schachtbauwerken oder geringer Aufwand für die Festpunkte. Der mehrlagige Balg wirkt sich auch positiv auf die Sicherheit des Kompensators aus. Sollte in der Verwendung des Kompensators die mediumberührte Lage durch z.B. Überbeanspruchung oder Ermüdung undicht werden, so wird sich das Medium langsam durch das Labyrinth der Mehrfachwandigkeit einen Weg suchen und an der aussen angebrachten Kontrollbohrung die Undichtheit automatisch anzeigen. Dieses Konstruktionsprinzip bringt folgende sicherheitstechnische Vorteile:

- Möglichkeit einer permanenten Leckageüberwachung bei gefährlichen Medien (unter Verwendung der Entlastungsbohrung).
- Trotz schwacher Leckage bleiben Druckfestigkeit und Funktion des Kompensators noch längere Zeit (Wochen, Monate) erhalten.
- · kein sofortiger Austausch notwendig
- ein spontanes Bersten ist ausgeschlossen

Eine weitere Ausnützung des mehrlagigen Balges erfolgt bei den Schwingungsdämpfern. Durch den kompakten Lagenaufbau entstehen innerhalb des Balgpaketes Reibeffekte und bei der Bewegung des Balges bildet das Kraft-Weg-Diagramm eine Hysterese.

• Somit eignet sich das Prinzip des mehrlagigen Balges sehr gut um Körperschall zu dämmen. Man erreicht ähnliche Resultate wie mit Gummielementen, mit dem Vorteil der höheren Temperatur-, Druck- und Alterungsbeständigkeit.



Eigenschaften von einfachwandigen gegenüber mehrfachwandigen Kompensatoren

- · hohe Ebenen- und Säulenstabilität bei gleicher Wandstärke
- · hohe Korrosionsbeständigkeit wegen dickerer Wandstärke
- weniger Verletzbarkeit gegen äussere Beschädigungen
- · eigene Reparaturschweissung bei Leckage evtl. möglich

2.2.3 Berechnung des mehrlagigen Balges

Die vorteilhafte Flexibilität des mehrlagigen Balges gegenüber einfachwandigen Kompensatoren lässt sich sehr gut mit dem einfachen Biegebalken zeigen. Es ist ersichtlich, dass bei gleicher Durchbiegung und sonst gleichen Abmessungen mit halbierter Trägerdicke a die Biegespannung F2 ebenfalls halbiert wird und die Verstellkraft des zweischichtigen Biegebalkens nur noch ein Viertel des ursprünglichen Wertes beträgt.

In der Regel werden die Bälge grossen statischen oder dynamischen Belastungen aus Innendruck, Temperatur, Schwingungen usw. ausgesetzt. Anders als bei einer festen Rohrleitung ist die Berechnung der Auswirkungen der diversen Belastungen auf einen mehrlagigen Balg komplex.

Um den hohen Sicherheitsanforderungen gerecht zu werden ist es notwendig, sich auf eine verlässliche und durch Versuche bestätigte Berechnungsmethode stützen zu können. Die Firma BOA nutzt dabei die seit 1958 veröffentlichen Erkenntnisse der Gruppe der amerikanischen Kompensatoren-Hersteller (EJMA). Diese Berechnungsmethode hat sich bei mehrlagigen Kompensatoren bestens bewährt und wird von allen internationalen Abnahmebehörden anerkannt.

2.2.4 Kriterien für die problemorientierte Balgauswahl

Die nachfolgend aufgeführten Standard-Programme der BOA Group ermöglichen dem Anwender eine speziell für seine Anwendung passende Balg- und Kompensatorenauswahl. Zum besseren Verständnis sollen an einem Beispiel die unterschiedlichen Möglichkeiten der zur Verfügung stehenden Balgtechnologien (HUB / EUB) erklärt werden.

Wir betrachten zunächst einen einwandigen Balg mit 4 Wellen und einer Wandstärke von s=1mm.

Bei einer Profilhöhe von H=28mm ist der Balg für einen Betriebsdruck von p_{zul} = 10 bar geeignet und besitzt eine Dehnungsaufnahme von Δ_{ax} = ±12mm bei einer axialen Federrate von c_{ax} .

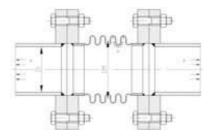
Wollen wir die **gleichen Leistungsdaten** für Druck und Dehnungsaufnahme mit einem **mehrlagigen** Balg realisieren, so benötigen wir bei einer Lagendicke von **s=0,5mm** bereits 4 Balglagen, um die gleiche Druckfestigkeit zu erreichen. Aufgrund der nur halb so dicken Lagenwandstärke verdoppelt sich jedoch die Dehnungsaufnahme pro Welle, so dass für eine Dehnungsaufnahme von Δ_{ax} = ±12mm nur noch **2 Wellen erforderlich** wären oder bei gleicher Wellenzahl 4 nun die doppelte Dehnungsaufnahme Δ_{ax} = ±24mm bei etwa halber Federrate (0,5 c_{ax}) zur Verfügung steht.

Im nächsten Schritt reduzieren wir nochmals die Lagenwandstärke auf 0,3mm. Um wiederum die gleiche Druckfestigkeit zu erreichen sind nun 9 Balglagen erforderlich, die bei gleicher Wellenzahl 4 die Dehnungsaufnahme auf Δ_{ax} = ±36mm verdreifacht und die Federrate auf ein Drittel absenkt.

Die Abhängigkeiten sind in der nachfolgenden Tabelle nochmals zusammengefasst:

zulässiger Betriebsdruc	k p _{zul} = 10 bar, Profilhöhe	H=28 mm		
Lagendicke s (mm)	Lagenzahl n	Wellenanzahl W	Dehnungsaufnahme	Federrate
			Δ_{ax} (mm)	
1	1	4	±12	C _{ax}
0,5	4	4	±24	0,5 c _{ax}
0,5	4	2	±12	C _{ax}
0,3	9	4	±36	0,33 c _{ax}

ELASTOMERE

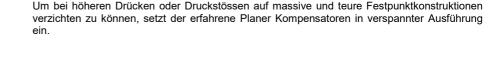

Besteht die Kompensationsaufgabe **primär in der Aufnahme einer bestimmten Wärmedehnung** ungeachtet der Baulänge und der Verstell-kräfte des Kompensators, so wie es beispielsweise bei axial kompensierten Fernwärmeleitungen der Fall ist, ist ein **ein- oder wenig-lagiger Balg** zur Lösung der Kompensationsaufgabe ausreichend.

Sind die Bauraumverhältnisse für den Kompensator eingeschränkt, so lässt sich mit einem mehrlagigen Balg die Baulänge wesentlich reduzieren.

Stehen jedoch die **Anschlusskräfte oder -momente** an einem empfindlichen Turbinen- oder Apparatestutzen **im Vordergrund**, so lassen sich diese durch die Wahl eines **mehrlagigen** Balges auf ein Drittel gegenüber der einwandigen Lösung mit gleicher Baulänge reduzieren.

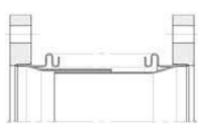
Geht es bei der Kompensationsaufgabe um die Entkopplung oder Dämpfung von Schwingbewegungen kleiner Amplitude, so wirkt der Einsatz von mehr- oder viellagigen Bälgen aufgrund der Lagenreibung dämpfend auf die sich einstellende Zwangsschwingung.

2.3 Kompensatoren in unverspannter Ausführung


Die nicht verspannten Kompensatortypen (axial und universal) üben unter Druckbeaufschlagung eine Reaktionskraft FP aus dem Produkt Überdruck p x Querschnittfläche [AB] auf die Rohrleitung resp. Festpunkte aus.

Der Balgquerschnitt [AB] kann in den Masstabellen der Kompensatortypen gefunden werden. Bei hohen Drücken und grossen Nennweiten wird die Reaktionskraft sehr gross, z.B. bei 40 bar Druck und einer Nennweite von 400 mm ergibt sich eine Reaktionskraft von ca. 600 kN. Entsprechend massiv müssen die Festpunkte ausgeführt werden.

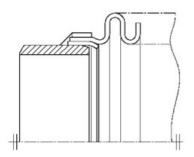
2.4 Kompensatoren in verspannter Ausführung


Die unter 2.3 erklärte Reaktionskraft wird von der Verspannung, d.h. den Gelenken oder Zugstangen aufgefangen. Je nach Leitungsführung und vorhandenen Bewegungen entscheidet man sich für den passenden verspannten Kompensatortyp. Trotz der Verspannung bleibt die Totallänge des Kompensators kurz und bringt daher Vorteile auch als Systemlösung.

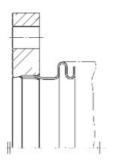
Nebst der Aufnahme der Reaktionskraft und deren sauberen Einleitung in die Anschlussteile trägt die Verspannung die Gelenkteile, um die Bewegungsfunktion zu gewährleisten. Dazu sind vielfach zusätzliche Lasten und Momente zu übertragen. Es versteht sich, dass die Dimensionierung der Verspannungsteile durch eine sichere und geprüfte Berechnungsmethode erfolgen muss. BOA nutzt dabei die Vorteile der FEM Berechnung und des nichtlinearen Traglastverfahren. Die Resultate der Berechnung folgen den Messwerten aus den vielen praktischen Versuchen und Berstdruckprüfungen.

2.5 Das innere Leitrohr (Schutzrohr)

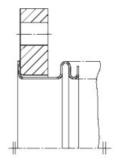
Innenleitrohre schützen den Balg und verhindern, dass dieser durch die hohe Geschwindigkeit des Mediums zum Schwingen angeregt wird. Der Einbau eines Innenleitrohres wird empfohlen:


- bei abrasiven Medien
- bei grossen Temperaturdifferenzen
- um Ablagerungen fester Bestandteile in den Wellen zu verhindern
- bei Durchflussgeschwindigkeiten grösser als ca. 8 m/s für gasförmige Medien
- bei Durchflussgeschwindigkeiten grösser als ca. 3 m/s für flüssige Medien

Weitere Angaben siehe "Montage- und Inbetriebnahmeanleitung"



2.6 Die Anschlussarten


Je nach Einsatzart, Austauschbarkeit, Sicherheit oder Druckstufe unterscheiden wir in der Regel drei Arten, um den Kompensator mit der Rohrleitung oder dem Aggregat zu verbinden.

Kompensator zum Einschweissen

Kompensator mit geschweisster Flanschverbindung

Kompensator mit loser (drehbarer) Flanschverbindung

2.6.1 Kompensator zum Einschweissen

Die Vorteile dieser Anschlussart liegen:

- In der Kompaktheit der äusseren Anschlussabmessungen analog der weiterführenden Rohrleitung.
- In den nachweislich zerstörungsfrei prüfbaren dichten Schweissnähten für den Einsatz mit erhöhten Druckbedingungen oder gefährlichen Medien.

Das Beherrschen des Schweissprozesses zwischen dem mehrlagigen Balg aus austenitischem Edelstahl mit einem ferritischen Schweissende (oder Flansch) erfordert besondere Massnahmen, Ausbildung und Erfahrung und ist mitentscheidend für die Qualität eines Kompensators. Mit den notwendigen Kontrollen garantiert BOA die Erfassung der Balgrohrlagen in der Schweissung, das kräftig und durchgehend ausgebildete Schweissgut und eine minimale Erwärmungszone. Mit unserem geprüften und optimierten Schweissverfahren werden Schweissfehler, Wärmerisse, Einschlüsse, Poren- und Lunkerbildung ausgeschlossen.

2.6.2 Kompensator mit geschweisster Flanschverbindung

Die Vorteile dieser Anschlussart liegen in der schnellen Austauschbarkeit des Kompensators und in der kurzen Baulänge. Bezüglich der Verbindungsschweissnaht zwischen mehrwandigem Balg und dem Flansch gelten dieselben hohen Anforderungen wie beim Schweissende.

2.6.3 Kompensator mit loser (drehbarer) Flanschverbindung

Die Vorteile dieser Anschlussart liegen, wie bei den geschweissten Flanschen in der Austauschbarkeit, der schnellen Montage und der kurzen Baulänge.

Zusätzlich bringt der beidseits um die Flansche gebördelte Balg die Möglichkeit, die Flansche zu drehen. Bei nicht fluchtenden Lochbildern und bei aggressiven Innenmedien schützt der gebördelte Balg die Flansche, so dass für diese keine besonderen Materialvorschriften erforderlich sind. Allerdings ist diese Flanschausführung nicht für alle Druckstufen erhältlich.

2.7 Ermittlung von Bewegungsgrössen

Kompensatoren nehmen verschiedene Bewegungen auf, die von unterschiedlichen Quellen verursacht werden, wie

- Montageversatz
- Schwingungen
- Montagespalt
- Dehnung durch Druckkraft
- Bodensenkungen
- Längenausdehnung

Den grössten Bewegungswert erreicht meistens die Längenausdehnung.

Montageversatz

Beim Montieren von Rohrleitungen entstehen meistens Montageungenauigkeiten. Diese Ungenauigkeiten können von Kompensatoren übernommen werden, wenn sie in der Auslegung berücksichtigt wurden. Die Lebensdauer des Kompensators wird dabei wenig beeinträchtigt, da es sich um eine einmalige Bewegung handelt. Es kann aber praktisch zu einer ganzen oder teilweisen Blockstellung der Wellen kommen, wenn man kurze Axialkompensatoren einsetzt. Die angegebene Bewegungsaufnahme würde behindert und zu einem frühzeitigen Versagen des Kompensators führen.

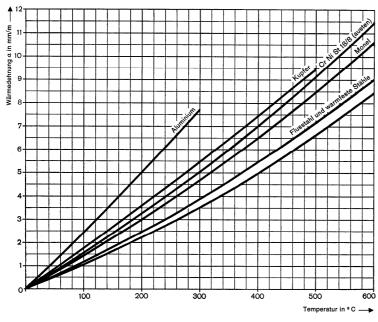
Schwingungen

Aufgrund rotierender oder hin- und hergehender Massen entstehen in Anlagen wie Pumpen, Kolbenmaschinen, Kompressoren usw. Schwingungen mit unterschiedlicher Frequenz und Amplitude. Diese Schwingungen erzeugen nicht nur lästigen Lärm, sondern regen angeschlossene Leitungen an bis zur Materialermüdung, die zu Ausfällen führen kann. Die Betriebssicherheit und die Wirtschaftlichkeit der Anlage ist dabei gefährdet.

Montagespalt

Beim Montieren von Rohrleitungsanlagen, besonders bei einem später notwendig werdenden Aus- und Einbau einzelner Komponenten, ist ein axialer Montagespalt unerlässlich, um die einzelnen Bauteile bequem ein- und ausbauen zu können. Das sogenannte Ausbaustück kann eine grössere Bewegung bis zur Blockstellung der Wellen ertragen, da die Häufigkeit des Ein- und Ausbauens meist gering ist.

Dehnung durch Druckkraft


Druckdehnungen treten auf an Behältern und in Rohrleitungen unter Druckbeanspruchung. Sie nehmen erst mit grösseren Abmessungen Werte an, die bei der Kompensation von Einfluss sein können.

Bodensenkungen

Handelt es sich um eine Bodensenkung, können Kompensatoren grössere Bewegungen übernehmen. Denn sie ist einmalig (keine Lastspiele) und der Kompensator kann sogar eine übermässige Verformung des Balges ertragen ohne undicht zu werden.

Längenausdehnung

Wärmeausdehnung verschiedener Metalle

Die Ursache der Längenveränderung einer Rohrleitung liegt hauptsächlich in den Temperaturunterschieden begründet. In radialer Richtung wirkt sich diese Längenveränderung infolge der geometrischen Form der Rohre unbedeutend aus und kann, zumal der Durchmesser der Rohre gegenüber der Länge einer Rohrleitung ungleich vielmal kleiner ist, unbeachtet bleiben. Hingegen bedarf die Volumenänderung in der Längsrichtung grösster Aufmerksamkeit, da sie mit dem Ansteigen der Temperatur und der Länge des Rohres sehr bedeutend werden kann.

Jeder Werkstoff hat seinen eigenen Ausdehnungskoeffizienten. Innerhalb der verschiedenen Eisen- und Stahlqualitäten ist er nicht sehr unterschiedlich. Die Differenz fällt aber mehr ins Gewicht, wenn es sich um Stahllegierungen wie zum Beispiel die warmfesten Stahlsorten oder gar um nichtrostende Stähle oder um hochhitzebeständige Metalle und deren Legierungen wie Nickel, Monel, Titan, Inconel, Nimonic etc. handelt. Auch Kupfer und Aluminium sowie deren Legierung weisen gegenüber diesen grössere Ausdehnungskoeffizienten auf. Mit dem BOA-Rechenschieber kann die Längenausdehnung schnell und annähernd genau ermittelt werden.

Bei Kunststoffleitungen ist die Längenausdehnung mehr als doppelt so gross wie bei Stahlleitungen.

2.8 Kriterien für die Auswahl der Kompensationsarten

Im Prinzip gibt es drei Kompensationsarten zu untersuchen, nämlich

- die elastische Biegung vorhandener Rohrschenkel (natürlicher Dehnungsausgleich, 2.8.1)
- Dehnungsausgleich mit unverspannten Kompensatoren (2.8.2)
- Dehnungsausgleich mit verspannten Kompensatoren (2.8.3)

Welche von den drei Kompensationsarten in Frage kommt, hängt auch von den nachstehenden Kriterien ab:

- Grösse und Art der zu kompensierenden Bewegung
- Dimension der Rohrleitung und vorhandene Drücke
- Rohrleitungsführung
- · Einbau- und Montagemöglichkeit
- Dimensionierung der Festpunkte und der Anschlüsse in Bezug auf Kräfte und Momente
- Gesamtkosten der Kompensation (im Vergleich zu Kosten der Festpunkte)

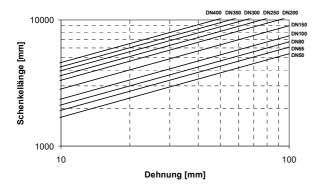
Bewegungen

Axial- und Lateralkompensatoren

Bei Axial- und Lateralkompensatoren entspricht die auftretende Dehnung dem realen Kompensationshub.

Angular- und Kardankompensatoren

Bei Angular- und Kardankompensatoren muss die auftretende Dehnung in eine Winkelbewegung umgerechnet werden. Diese Umrechnung ist in Module 3a Angularkompensatoren ausführlich beschrieben.


2.8.1 Natürlicher Dehnungsausgleich

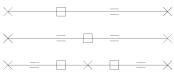
Kann das Rohrleitungssystem zwischen zwei Festpunkten entsprechend den örtlichen Verhältnissen so angeordnet werden, dass die auftretenden Wärmedehnungen der Rohrleitungen durch das elastische Verhalten der Rohrbogen und Rohrschenkel (Verbiegen oder Verdrehen) aufgenommen werden, so sind diese zu nutzen. Künstlich angeordnete Rohrschenkel aber sind aus Platz- und Kostengründen nicht wirtschaftlich. Eine natürliche Kompensation ist nur dann sinnvoll, wenn die Rohre zusätzlich zu den Spannungen aus Innendruck die wechselnden Spannungen aus den Bewegungszyklen aufnehmen können, ohne vorzeitig zu ermüden.

Mit Hilfe eigener Software und Tabellen können wir die Kunden beraten, ob ein natürlicher Dehnungsausgleich möglich ist oder ob Kompensatoren vorgesehen werden sollen.

Dehnungsaufnahme von rechtwinkligen Rohrleitungsschenkeln

Dehnungsaufnahme von C-Stahl

2.8.2 Dehnungsausgleich mit unverspannten Kompensatoren


Reaktionskraft und Eigenwiderstand von unverspannten Kompensatoren müssen von Festpunkten am Anfang und am Ende des Leitungsabschnittes aufgenommen werden. In einer längeren Leitung, wo mehrere Kompensatoren in Serie montiert werden, sind durch Zwischenfestpunkte Leitungsabschnitte zu bilden. In jedem Abschnitt ist ein Axialkompensator zu platzieren. Festpunkte am Anfang und am Ende der geraden Rohrleitung müssen der vollen Reaktionskraft standhalten. Zwischenfestpunkte müssen primär Reibungs- und Verstellkräfte aufnehmen. Axialkompensatoren nehmen axiale Dehnungen auf. Die Rohrleitung ist daher unmittelbar beim Kompensator axial zu führen. Geringe seitliche Bewegungen von wenigen Millimetern sind wohl zulässig, verringern aber die Lebensdauer der Axialkompensatoren, wenn der zulässige Axialhub gleichzeitig voll genutzt wird.

Vorteile:

- einfache Kompensationsart
- keine Änderung der Flussrichtung
- · minimaler Platzbedarf

Nachteile:

- starke Festpunkte und gute axiale Rohrführungen notwendig
- bei grossen Dehnbewegungen sind mehrere Axialkompensatoren nötig
- $\bullet \ \text{auf langen Strecken sind viele Festpunkte und Rohrführungen erforderlich} \\$

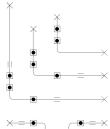
Zwischen zwei Festpunkten darf immer nur ein unverspannter Kompensator eingebaut werden.

2.8.3 Dehnungsausgleich mit verspannten Kompensatoren

Im Gegensatz zu unverspannten Kompensatoren verlangen die verspannten Kompensatoren nur leichte Festpunkte (genügend stabile Halterung). Die vom Balg ausgehende Reaktionskraft wird von der Rückhaltevorrichtung aufgenommen und wirkt als Festpunktbelastung. Lediglich der Eigenwiderstand des Balges und die Reibkräfte der Rückhaltevorrichtung wirken auf die Festpunkte. Die Festpunkte sind so zu berechnen, dass sie den Reibungskräften an den Rohrführungslagern und den Verstellkräften der Kompensatoren standhalten.

Als verspannte Kompensatoren kommen Angular- und Lateralkompensatoren zum Einsatz. Als weitere Möglichkeit ist die Verwendung von druckentlasteten Kompensatoren gegeben.

2.8.3.1 Dehnungsausgleich mit Angularkompensatoren


Die Angularkompensatoren sind dort anzuwenden, wo grosse Rohrdehnungen auftreten. Mit Standardkomponenten wird ein Kompensatorensystem erstellt. Hierzu sind 2-3 Kompensatoren erforderlich. Der Einbau von Angularkompensatoren verlangt immer eine Richtungsänderung der Rohrleitung. Sie werden daher möglichst dort eingesetzt, wo eine rechtwinklige Umlenkung der Rohrleitung ohnehin vorgesehen ist. Die Dehnungsaufnahme von Angularsystemen ist fast beliebig gross. Sie wird durch die Leitungsdimension, die zulässigen Bewegungswinkel der Angularkompensatoren und die Länge des zwischen zwei Angularkompensatoren eingesetzten Rohrstückes bestimmt.

Vorteile:

- fast beliebig grosse Bewegungsaufnahme
- · geringe Festpunktbelastung
- · Anwendung im Baukastenprinzip
- · Einsatz von normalen Führungen

Nachteile:

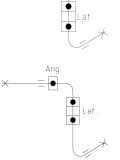
- Umlenkung der Rohrleitung erforderlich
- grösserer Platzbedarf als Axialkompensatoren
- zwei oder drei Kompensatoren nötig pro Kompensationssystem

2.8.3.2 Dehnungsausgleich mit Lateralkompensatoren

Die Lateralkompensatoren, mit Kugelgelenken ausgerüstet, sind innerhalb einer Kreisebene beweglich. Sie finden dort Anwendung, wo Bewegungen aus zwei Richtungen (gleichzeitig oder zeitlich gestaffelt) auftreten. Bei genügender Baulänge können sie grosse Bewegungen aufnehmen. Häufiger ist der Einsatz von kurzen Kugelgelenk-Kompensatoren für kleine Dehnungsaufnahme bei räumlich komplizierter Leitungsführung oder für den spannungsfreien Anschluss direkt vor empfindlichen Aggregaten wie Pumpen, Kompressoren und Maschinen.

Werden ein Lateralkompensator und ein Angularkompensator rechtwinklig zueinander angeordnet, so nimmt ein solches System Dehnungen in allen drei Richtungen auf (Lateralkompensator nur mit 2 Zugstangen, Einbaulage der Zugstangen beachten). Der Einbau von Lateralkompensatoren verlangt immer eine Richtungsänderung der Rohrleitung.

Vorteile:


- Bewegungsaufnahme in allen Richtungen in einer Ebene
- Dehnungsaufnahme in allen drei Richtungen möglich bei Verwendung von einem Lateral- mit einem Angularkompensator (Bauart Lateralkompensator: nur mit 2 Zugstangen, Einbaulage der Zugstangen beachten)
- geringe Festpunktbelastung

Nachteile:

- Umlenkung der Rohrleitung erforderlich
- grösserer Platzbedarf als Axialkompensatoren

Bei Vakuum Doppelkugelgelenk vorsehen!

2.8.3.3 Dehnungsausgleich mit druckentlasteten Kompensatoren

Es werden alle Arten von Sonderausführungen wie druckentlastete Axialkompensatoren, eckentlastete Kompensatoren, kombinierte Axial-Lateral-Kompensatoren konstruiert und gefertigt. Diese Konstruktionen sind genormt, aber nicht standardisiert. Es empfiehlt sich, derartige Aufgabenstellungen dem Hersteller zu unterbreiten. In einigen Fällen sind diese Sonderausführungen die technisch idealste Lösung, aber möglicherweise die teuerste Variante.

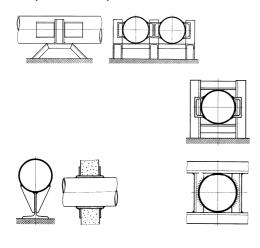
Vorteile:

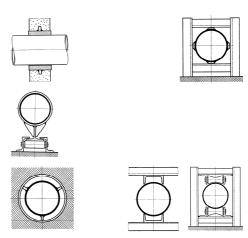
- geringe Festpunktbelastung
- minimaler Platzbedarf
- technisch ideale Lösung

Nachteile:

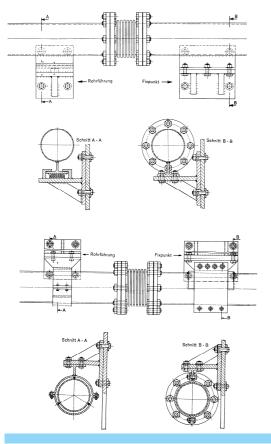
· Einzelfertigung, deshalb höherer Preis

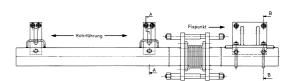
2.9 Festpunkte, Rohrführungen und Hänger

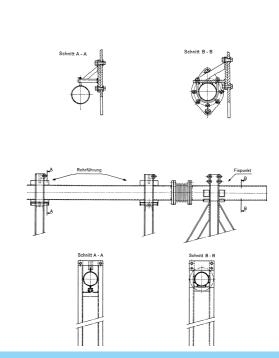

Festpunkte müssen, ungeachtet der Art der Kompensatoren, an jedem Ende einer Rohrleitung gebaut werden. Bei der Verwendung von Axial-kompensatoren ist auch jeder den Rohrverlauf richtungsändernde Bogen, Winkel oder jede wesentliche Rohrabbiegung zu verankern. Rohrleitungen, deren Längendehnung durch mehrere Kompensatoren aufgenommen wird, müssen durch montierte Festpunkte in so viele Teile unterteilt werden wie Kompensatoren notwendig sind. Die Lage der Festpunkte richtet sich einerseits nach dem Richtungsverlauf der Rohrleitung, anderseits nach den örtlichen Verhältnissen. Ihre gute Verankerungsmöglichkeit ist dabei ausschlaggebend.


Der gewellte Balg des Kompensators hat das Bestreben sich auszudehnen, wenn er einem inneren Überdruck unterworfen wird, und sich zusammenzuziehen, wenn ein innerer Unterdruck herrscht. Diese Druck- oder Zugkraft, die Reaktionskraft des Balges, überträgt sich auf die Rohrleitung und muss mit der Verankerung der Rohrleitung aufgenommen werden. Die Stärke des Festpunktes und damit im wesentlichen seine Konstruktion wird durch die Reaktionskraft bestimmt. Hierbei ist nicht die Reaktionskraft des Betriebs- sondern jene des Probedruckes massgebend, da die Verankerung bei der Abpressung der Rohrleitung im Probelauf die Reaktionskraft aufnehmen muss. Der Probedruck soll jedoch nicht höher als das 1.5-fache des Nenndruckes gewählt werden. Nebst der Reaktionskraft kommt der Eigenwiderstand des Balges dazu, der in der Regel nur einen geringen Prozentsatz der Reaktionskraft beträgt. Wo keine genügenden Festpunkte gebaut werden können, sind verspannte Kompensatoren wie Winkel-, Gelenk- oder druckentlastete Axialkompensatoren vorzusehen.

Festpunkte innerhalb einer geradlinig verlaufenden Teilstrecke können leichter konstruiert sein, da sie nur den Eigenwiderstand des Balges und die Reibungskräfte von Führungen aufnehmen müssen. Sie müssen hingegen nicht die Reaktionskraft aufnehmen, die sich nur auswirkt auf richtungsändernde Stellen der Rohrleitung, ihre Querschnittveränderung oder auf deren Abschlüsse (Ventile, Schieber). Bei Änderung des Rohrdurchmessers muss die Differenz der Reaktionskraft zwischen den grösseren und kleineren Rohrdurchmessern zu den übrigen Kräften hinzugefügt bzw. von ihnen abgezogen werden. Die Konstruktion eines Festpunktes kann sehr einfach sein. Wir führen schematisch einige mögliche und oft verwendete Festpunktkonstruktionen an. Die zu wählende günstigste Art richtet sich nach den örtlich gegebenen Verhältnissen.


Beispiele von Festpunkten:




Beispiele von Rohrführungen:

Beispiele von Rohrführungen und Festpunkten:

2.10 Nennbedingungen

Die in den technischen Datenblättern aufgelisteten Kompensatoren sind nach Kompensatortyp, Nennweite (DN), Nenndruck (PN) und Dehnungsaufnahme geordnet.

Für die richtige Auswahl eines Kompensators sind verschiedene Faktoren zu beachten.

Nennweite DN

Die Nennweite des auszuwählenden Kompensators richtet sich nach den vorhandenen Flanschanschlüssen oder Rohrleitungsabmessungen.

Die Aussendurchmesser der Kompensatorschweissenden entsprechen der ISO-Reihe. Die genauen Anschlussabmessungen, insbesondere die Wanddicke, sind in den technischen Datenblättern aufgeführt.

Die Anschlussabmessungen der Kompensatoren mit Flanschanschluss sind nach EN 1092 ausgeführt.

Nenndruckstufe PN

Die Druckstufenangabe (PN) ist für die Standardkompensatoren eine Kennzahl, die den zulässigen Betriebsüberdruck PS bei Nenntemperatur (20°C) angibt.

Wird ein Kompensator bei einer Temperatur oberhalb der Nenntemperatur eingesetzt, so reduziert sich seine Druckbelastbarkeit um den Abminderungsfaktor K_P. Zur einfacheren Handhabung sind die Abminderungsfaktoren K_P in Abhängigkeit von der Temperatur direkt auf den technischen Datenblättern angegeben.

Der zulässige Betriebsüberdruck PS eines Kompensators bei einer Betriebstemperatur TS berechnet sich wie folgt:

$$PS (TS) = PN * K_P (TS) [bar]$$

Soll ein Kompensator für den Betriebsüberdruck PS und die Betriebstemperatur TS ausgewählt werden, so ist zunächst der auf Nenntemperatur umgerechnete Ersatzdruck Pe zu ermitteln, der kleiner oder gleich der erforderlichen Nenndruckstufe PN sein muss.

$$P_e = PS / K_P (TS) \le PN [bar]$$

Nominale Dehnungsaufnahme

Die nominalen Dehnungsaufnahmen in den technischen Datenblättern geben die Bewegungsgrösse an, die der entsprechende Kompensator bei Nenntemperatur aus seiner Neutralstellung aufnehmen kann. Bei einem Axialkompensator beispielsweise bedeutet die Angabe $\pm \Delta_{ax}$, dass der Kompensator in der Lage ist, 1000 Voll-Lastspiele bei Nenndruck und einen Gesamtdehnweg von 2 · Δ_{ax} innerhalb der um Δ_{ax} gestauchten bzw. um Δ_{ax} gestreckten Neutralstellung aufzunehmen. Hierbei ist es unerheblich, ob der Lastspielzyklus in der gestauchten, neutralen oder gestreckten Lage beginnt.

Um den Gesamtdehnweg $2 \cdot \Delta_{ax}$ für die Kompensation nutzbar zu machen, ist es erforderlich, den Kompensator um 50 % des Gesamtdehnweges, d. h. um Δ_{ax} vorzuspannen. Entsprechendes gilt auch für die laterale bzw. angulare Bewegungsaufnahme ($\pm \Delta_{lat}$ bzw. $\pm \alpha$).

Besonders montagefreundlich sind diejenigen Axialkompensatoren unserer Standardprogramme, die ohne bauseitige Vorspannung geeignet sind, ihre Gesamtdehnung auf Kompression aufzunehmen.

Bei diesen Kompensatoren entspricht die nominale axiale Dehnungsaufnahme Δ_{ax} der Gesamtdehnungsaufnahme auf Kompression.

Wird ein Kompensator bei einer Temperatur eingesetzt, die oberhalb der Nenntemperatur für die Dehnungsaufnahme liegt, so reduziert sich die Dehnungsaufnahme um den Abminderungsfaktor K_{Δ} .

Die Abminderungsfaktoren K_Δ (TS) sind in Abhängigkeit von der Temperatur auf den technischen Datenblättern angegeben.

Die zulässige Dehnungsaufnahme $\pm \Delta_{zul}$ (TS) bzw. $\pm \alpha_{zul}$ (TS) eines Kompensators bei einer Betriebstemperatur TS berechnet sich wie folgt:

$$\pm \Delta_{zul}$$
 (TS) = $\pm \Delta * K_{\Delta}$ (TS)

Benötigt man für einen Betriebsfall eine Dehnungsaufnahme von ±∆TS bei einer Betriebstemperatur von TS, so ist die erforderliche nominale Dehnungsaufnahme des auszuwählenden Kompensators wie folgt zu ermitteln:

$$\pm \Delta \geq \pm \Delta TS / K_{\Delta} (TS)$$

Balgeigenwiderstand ± 30% (Federrate)

Der Balgeigenwiderstand ist die Kraft (Moment), die der Balg einer Bewegung entgegensetzt.

Der spezifische Balgeigenwiderstand pro ± 1 mm (1°) ist in den technischen Tabellen als Federrate angegeben. Aus fabrikationstechnischen Gründen gilt eine Toleranz von ± 30% für die aufgeführten Werte.

Lebensdauer

Unter der Lebensdauer eines Kompensators versteht man die Anzahl der Voll-Lastspiele, die bis zum Auftreten einer Leckage durch Ermüdung mindestens aufgenommen werden kann. Die max. zulässige Dehnungsaufnahme ist auf dem Kompensator angegeben. Sie bezieht sich auf 1000 Lastwechsel (CE konforme Kompensatoren 500 Lastwechsel mit Sicherheit 2).

Die in den technischen Datenblättern angegebenen nominalen Dehnungsaufnahmen beziehen sich auf eine Mindestlebensdauer von 1000 Voll-Lastspielen bei Nennbedingungen.

Unter einem Lastspiel versteht man hierbei den Beanspruchungszyklus, der zwischen den beiden Extremstellungen beim Aufbringen und Wegnehmen der Gesamtdehnungsaufnahme durchlaufen wird.

Wird beispielsweise eine Rohrleitung von Umgebungstemperatur auf volle Betriebstemperatur gebracht und kühlt anschliessend wieder ab, so stellt dies für einen in der Leitung eingebauten Kompensator ein Voll-Lastspiel dar. Für den Normalfall ist eine Auslegung auf 1000 Lastspiele vollkommen ausreichend.

Werden höhere Lastspielzahlen benötigt wie z. B. bei Industrieanlagen mit mehreren Betriebsintervallen pro Tag, so muss die Dehnungsaufnahme um den entsprechenden Lastspielfaktor K_L (siehe Tabelle) reduziert werden.

Lastspielfaktor K_L

Lastspiele	Lastspielfaktor
N_{zul}	K_L
1'000	1.00
2'000	0.82
3'000	0.73
5'000	0.63
10'000	0.51
30'000	0.37
50'000	0.32
100'000	0.26
200'000	0.22
1'000'000	0.14
25'000'000	0.05

$$K_L = (1000/N_{zul})^{0.29}$$

Lebensdauermindernde Zusatzeinflüsse wie Korrosion, schlagartige Beanspruchungen durch Verpuffungen, Wasserschläge oder Thermoschocks, Resonanzen durch strömungsinduzierte bzw. mechanische Anregungen lassen sich rechnerisch nicht erfassen und sind deshalb unzulässig.

Treten im Betrieb neben dem statischen Innendruck zusätzliche dynamische Druckschwankungen auf, so reduzieren diese die Lebensdauer. Bei einer geringen spezifischen, auf den Nenndruck bezogenen Druckschwankungsbreite ist der Einfluss auf die Lebensdauer gering, meist sogar vernachlässigbar. Bestehen Unsicherheiten hinsichtlich der Beurteilung des Einflusses, bitten wir im Einzelfall um Ihre Rückfrage.

Lastkollektiv

Soll ein Kompensator für verschiedene Lastfälle ausgelegt werden, so ist der Erschöpfungsgrad (D_i) der einzelnen Lastkollektive linear zu akkumulieren

$$D = \sum D_i = \sum (n_i/N_i) \le 1$$

wobei n_i die erforderliche und N_i die zulässige Lastspielzahl des jeweiligen Lastfalles bedeuten.

Beispiel

Lastfall 1 mit n_1 = 500 Lastspielen bei 100 % Nenndehnungsaufnahme mit N_{1zul} = 1000. Lastfall 2 mit n_2 = 10 000 Lastspielen bei 30 % Nenndehnungsaufnahme (K_L = 0,3) mit

$$N_{2zul} = 1000 / (K_L^{3,45}) = 63670$$

ergibt einen Gesamterschöpfungsgrad von

$$D = n_1 / N_{1zul} + n_2 / N_{2zul} = 0.66 < 1$$

und stellt mit 66 % Auslastung ein zulässiges Lastkollektiv dar.

2.11 Werkstoffe

Die Werkstoffe für Metallbälge, ob einwandig, mehr- oder vielwandig, müssen vielfältigen Randbedingungen genügen. Diese sind:

Schweissbarkeit

Sie muss grundsätzlich gewährleistet sein. Die Balglängsnähte haben die gleichen Bedingungen wie der Grundwerkstoff zu erfüllen.

Verformbarkeit

Sie ist Voraussetzung für die Herstellung von kaltverformten Bälgen, wobei genügende Restbruchdehnung gewährleistet sein muss.

mechanische Festigkeitseigenschaften

Für die Druckfestigkeit ist eine hohe mechanische Festigkeit Voraussetzung. Sie erweitert gleichzeitig den elastischen Bereich.

· technologische Eigenschaften

Hierzu zählen die Biegewechseleigenschaften bei Kompensatoren. Sie werden nicht nur von den Legierungsbestandteilen bestimmt, sondern auch vom Oberflächenzustand, von der Korngrösse und vom metallurgischen Gefügezustand.

Korrosionsbeständigkeit

Bei Kompensatorenbälgen wird kein Korrosionszuschlag berücksichtigt. Er würde die Dehnungseigenschaften des Balges nachteilig beeinflussen. Es kommen somit nur Werkstoffe in Frage, die für das betreffende Medium korrosionsbeständig sind.

Temperatureigenschaft

Sie bezieht sich auf die Warmfestigkeit oder die Kaltzähigkeit sowie das Langzeitverhalten der Werkstoffe. Fast alle austenitischen Chrom-Nickelstähle sind kaltzäh bis -200°C und erfüllen meist bis 550°C alle Voraussetzungen.

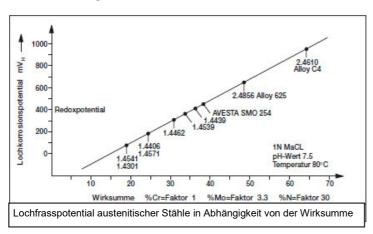
Für den Einsatz in höheren Temperaturbereichen ab ca. 550°C kommen spezielle warmfeste Werkstoffe in Betracht.

Die vorgenannten Kriterien werden vorwiegend von nichtrostenden Stählen erfüllt. Der Sammelbegriff für diese Werkstoffe lautet "Edelstahl rostfrei". Sie enthalten im allgemeinen mehr als 12% Chrom (Cr) und sind beständig gegen oxidierende Angriffsmittel.

Höhere Chrom-Gehalte und weitere Legierungsbestandteile wie Nickel (Ni), Molybdän (Mo) und Stickstoff (N) verbessern die Korrosionsbeständigkeit.

Ebenso werden die mechanischen und technologischen Eigenschaften mit diesen und anderen Zusätzen nachhaltig beeinflusst. Mit mindestens 8 % Nickel wird der "Edelstahl rostfrei" austenitisch. Diese Stähle werden daher oft z. B. als 18/8, 18/10 oder als austenitische Chrom-Nickelstähle bezeichnet.

Mit der Bildung einer Passivschicht und dem Vorhandensein von Sauerstoff erhält "Edelstahl rostfrei" seine korrosionsschützende Eigenschaft.

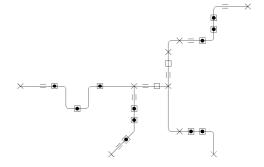

Standardwerkstoffe für Bälge sind

Werkstoff-	Kurzname	AISI
Nr.	DIN 17006	(USA)
1.4541	X6 Cr Ni Ti 18 10	321
1.4571	X6 Cr Ni Mo Ti 17 12 2	316 Ti

Es handelt sich hierbei um austenitische, titanstabilisierte Stähle mit einer breiten Palette des Anwendungsbereiches.

Bei aggressiveren Korrosionsbedingungen sollten höher legierte Stähle oder Nickelbasiswerkstoffe zur Verwendung kommen.

Wirksummen-Diagramm



Mit dem nebenstehenden Wirksummendiagramm kann die Steigerung der Korrosionsbeständigkeit in wässrigen Medien abgeschätzt werden. Das Lochkorrosionspotential stellt hierbei ein Mass für die Beständigkeit des Werkstoffes gegen Lochfrass in Abhängigkeit von der Wirksumme der Legierungsbestandteile dar, wobei die Elemente Chrom, Molybdän und Stickstoff einen bedeutenden Einfluss haben (siehe Wirksummenfaktoren). Der Werkstoff 1.4439 beispielsweise besitzt aufgrund seines Molybdän- und Stickstoffanteils (4-5% Mo, 0,1-0,2% N) gegenüber dem Werkstoff 1.4541 eine etwa zweimal höhere Wirksumme und ist deshalb gegen Lochfrass wesentlich beständiger.

2.12 Vorgehen in der Praxis

Bei einer vorgegebenen Leitungsführung, siehe nebenstehendes Beispiel, sind zunächst dort Festpunkte zu setzen, wo eine Bewegung der Leitung unerwünscht ist, nämlich an den Abzweigpunkten. Als nächster Schritt sind diejenigen Leitungsabschnitte zu betrachten, deren natürliche Schenkel in der Lage sind, Teile der auftretenden Rohrleitungsdehnung aufzunehmen. Diese Leitungsabschnitte sind durch Festpunkte zu begrenzen. Für die anderen Leitungsteile sind für die Dehnungsaufnahme Kompensatoren vorzusehen.

Für den Entscheid, ob Axial- oder Gelenkkompensatoren gewählt werden sollen, sind zwei Fragen ausschlaggebend: der Leitungsverlauf und die Möglichkeit, axiale Kräfte aufzunehmen. Handelt es sich um ein Leitungssystem mit kurzen, geraden Teilstücken und Dehnungsbewegungen bis ca. 80 mm, also ein solches mit vielen Richtungsänderungen und Abzweigungen, empfiehlt sich ein Axialkompensator. In langen geraden Leitungen mit Dehnungsbewegungen über 80 mm finden eher Gelenkkompensatoren Anwendung. Sind die bauseitigen Verhältnisse so, dass die Verankerung starker Festpunkte und die Platzierung genügender Führungen möglich ist, so ist die Wahl von Axialkompensatoren richtig. Andernfalls, insbesondere bei Leitungen grossen Querschnitts und bei hohen Druckverhältnissen ist der Gelenkkompensator auch dort zweckmässig, wo kleine Dehnbewegungen auftreten. Künstlich angeordnete Rohrschenkel sind aus Platz- und Kostengründen nicht wirtschaftlich. Es ist durchaus möglich, innerhalb eines Rohrleitungssystems nach verschiedenen Arten zu kompensieren. Jedem einzelnen Kompensator ist aber seine Aufgabe zuzuteilen, indem der von ihm zu kompensierende Leitungsabschnitt durch zwei Festpunkte zu begrenzen ist. Wer beim Lösen von Kompensationsproblemen in Rohrleitungen in dieser Reihenfolge vorgeht, findet die wirtschaftlich vorteilhafteste Lösung. Die frühzeitige Zusammenarbeit mit dem Hersteller wird sich aber immer lohnen.

2.12.1 Datenanfrage / Checkliste

ROA Checkliste: Kompensatoren

Fordern Sie zur Einplanung von Kompensatoren mit CE-Markierung unseren technischen Vorschlag an. Die notwendigen Informationen zur Kompensatorenauslegung können Sie mit Hilfe dieser Checkliste zusammenstellen. Fügen Sie nach Möglichkeit eine Einbauskizze und/oder eine Isometrie des Systems bei. Bei Bedarf nachfolgende Liste kopieren oder von unserer Webseite herunterladen.

Firma:							
Ansch	rift:						
Anfrag	e Nr.:		Sa	achbearbeiter:_			_
Menge	e	_ Stück	DN	mm			
-	ensatortyp:						
□ Axia □ Nied	l lerdruck		□ Lateral □ Schwingu	□ し ngsdämpfer □ Ü	Jniversal İbrige	□ Angular	
Balgw	erkstoff:						
Ausse	•		□ 1.4541	_	.4404	□ 1.4571	
	nenlage:		□ 1.4541	-	.4404	□ 1.4571	
Innenla	age:		□ 1.4541	□ 1	.4404	□ 1.4571	
Inneni	leitrohr:		□ja	□n	ein		
Werks	toff:		□ 1.4541	□1	.4404	□ 1.4571	<u> </u>
Ansch	lussteile:		1. Seite	2. 9	Seite		
	ch lose:						
	h geschweisst:						
Rohrst							
	toffe 1. Seite:		□ 1.4541 □ 1.4541	□ 1.4301	□ 1.4571	□ C-Stahl	
Werks	toffe 2. Seite:		□ 1.4541	□ 1.4301	□ 1.4571	□ C-Stahl	
Hub:	□ axial		±	_			
	□ lateral		±	_ mm			
	□ angular		±				
	□ Schwingungen		±	_ mm			
Lasts	oiele:		□ 1000				
			□ 500 (Lage	rprodukte und	Druckgeräterich	tlinie 97/23/EG mi	t CE-Markierung)
			п				

Betriebsbedingungen:	□ Druckgeräteric □ Rohrleitung □		3	
bei Rohrleitung:	Fluidart: ☐ Gruppe 1: get ☐ Gruppe 2: unç			
bei Behälter: notwendige Kundenan Behälter, Kategorie:	gaben:			
Fluidart:				•
Fluidgruppe:				
Abnahmegesellschaft:				-
Maximaler Betriebsdruck PS: Minimaler Betriebsdruck PS:	bar bar (we	enn noch im Va	kuumbereich ang	ewendet)
Maximale Betriebstemperatur TS: Minimale Betriebstemperatur TS:	°C °C (we	nn noch im Min	us-Temperaturbe	ereich angewendet)
Prüfungen:	☐ Standard ☐ ☐ Sonderprüfunç		chtlinie 97/23/EG	
Abnahmeprüfzeugnisse: □ EN 10204-2.2 □ EN 1020 □ Konformitätserklärung nach Druckg □ Konformitätsbescheinigung durch A	geräterichtlinie 97/2		2	
Kennzeichnung:	□ Standard □ nach Druckge	□ EN 10380 räterichtlinie 97		□ Kundenangaben
Verpackung:	□ Standard	□ Spezial	□ Kundenang	aben
Diverses: ☐ Aussenschutzrohr	☐ Transportsiche	erung	o	
Ausgestellt durch:				
Ort / Datum:				
Unterschrift:				
Schema / Skizze:				

BOA Ratgeber Kompensatoren

3 Qualitätssicherung

3.1 Zulassungen / Zertifikate

Die Auslegung, Berechnung, Fertigung und Prüfung der BOA-Kompensatoren erfolgt nach sachgemässen und dem Stand der Technik entsprechenden Vorgaben. Mit den regelmässigen Überprüfungen durch akkreditierte Firmenzulassungsstellen wird die sachliche und fachliche Kontinuität der BOA-Prozessabläufe bestätigt.

Firmenzulassungen

EN 9100 ISO 9001 ISO 14001 ISO TS 16949 Euro-Qualiflex ISO 3834-2 DIN EN 15085-2 Qualitätsmanagement für Luft-/Raumfahrt
Qualitätsmanagement
Umweltmanagement
Qualitätsmanagement
Qualitätsmanagementsystem
Zertifizierung als Schweissbetrieb
Schweissen von Schienenfahrzeugen und –fahrzeugteilen

€ 0036

PED-Konformität Druckgeräterichtlinie DGR 97/23/EG (und SR 819.121) berechtigt zur CE-Kennzeichnung

Schweiz. Verein für techn. Inspektionen Regulation 201 und 501

Euro-Qualiflex

TÜV Süd

KTA 1401

Produktzulassungen

Um die jeweiligen Marktausrichtungen abzudecken, können ebenfalls die dazu notwendigen Produktzulassungen durch akkreditierte Zulassungsstellen organisiert werden.

Bureau Veritas

Det Norske Veritas

Germanischer Lloyd

Lloyd's Register

Deutscher Verband des Gas- und Wasserfaches

DIN GOST

3.2 Prüfungen / Labor

Die BOA Kompensatoren können verschiedenartigen Qualitätsprüfungen und Abnahmen unterzogen werden. Der Umfang des Prüfprogrammes richtet sich nach den Anforderungen und Wünschen des Kunden beziehungsweise des Auslegungs- und Fertigungsstandards sowie der Abnahmeorganisation.

Produktqualität ist aber eine Frage des Fertigungsstandards und nicht der sich anschliessenden Prüfungen. Diese bestätigen nur das vorgegebene geforderte Qualitätsniveau. Deshalb ist unsere Fertigung generell auf ein hohes Qualitätsniveau abgestimmt. Zusatzprüfungen sollten nur dort verlangt werden, wo dies der Anwendungsfall zwingend erfordert. Wird im Einzelfall ein Auslegungsnachweis verlangt, ist unter genauer Angabe der Forderungen eine Überprüfung der zulässigen Betriebsdaten bei uns im Werk erforderlich.

Zerstörungsfreie Prüfverfahren

- TP Wasserdruckprüfung
- LT Dichtheitsprüfung mit Luft oder Stickstoff unter Wasser
- LT Dichtheitsprüfung mit Luft und Schaumbildner an den Schweissnähten (Nekaltest)
- Differenzdruckprüfung mit Luft
- RT Röntgenprüfung
- MP Magnetpulver-Rissprüfung
- PT Farbeindringprüfung
- LT Helium-Lecktest (<1x10⁻⁹ mbar l/s)
- US Ultraschallprüfung
- VT Sichtprüfungen
- Härteprüfung

Zerstörende Prüfverfahren

- Mechanische Festigkeitsprüfung
- Tiefungsversuch
- · Metallographische Untersuchung
- Spektroskopische Prüfung
- Hub-Prüfung (Lebensdauerprüfung unter Druck)
- Schwingungsprüfung
- Berstdruckprüfung

Unsere VT & PT-Prüfer sind nach EN473 und ASME zertifiziert.

Prüfungen und Labor

Gegenüber anderen Leckprüfmethoden kann mit dem Heliumtest die bisher kleinste messbare Leckrate festgestellt werden. Je nach Grösse des Prüflings kann noch ein Leck bis 10⁻⁹ mbar I/s festgestellt werden. Mit einer Spezialvorrichtung wird der Kompensator beidseits verschlossen und auf ein Vakuum von 10⁻² mbar leergepumpt. Die Schweissnähte werden von aussen mit Helium angeblasen. Ein Leck wird sofort durch das Massenspektrometer registriert und am Messinstrument kann die Leckrate abgelesen werden. Ein akustisches Signal macht ausserdem auf eine Undichtigkeit aufmerksam.

Hubprüfung zur Ermittlung der erreichbaren Lastspielzahl

Makroquerschliff einer Innenschweissnaht

Heliumlecktest

BOA Ratgeber Kompensatoren

4 Anwendungen

In fast allen technisch orientierten Industriebereichen werden Kompensatoren für den sicheren Betrieb der Anlagen benötigt. Der Einsatz der flexiblen, metallischen Kompensatoren im modernen Anlagen- und Apparatebau ist nicht allein aus technischen Gründen erforderlich, ebenso wichtig ist er für die Erfüllung der Forderungen aller Industrien nach:

- erhöhter Wirtschaftlichkeit
- reduzierter Anlagengrösse
- Montagefreundlichkeit

- Systemkompatibilität
- störungsfreiem Betrieb und
- · Sicherheit bei Störfällen

BOA-Kompensatoren erfüllen all diese Anforderungen. Nachfolgend werden einige Anwendungsgebiete aufgezeigt, wo BOA-Kompensatoren hauptsächlich eingesetzt werden. Unser erfahrenes Team entwickelt jedoch gerne mit Ihnen zusammen neue Anwendungen in den Bereichen, wo flexible Rohrelemente oder Verbindungen benötigt werden. Fordern Sie uns mit Ihrer Aufgabenstellung heraus. Wir sind als Problemlöser seit über hundert Jahren auf dem Markt bekannt.

4.1 Diesel- und Gasmotoren

BOA liefert seit Jahrzehnten an namhafte Dieselmotorenhersteller Kompensatoren in Abgasleitungen zwischen Auslassventil und Turbolader. Durch die stetige Weiterentwicklung unserer Produkte in diesem Bereich sind wir heute in der Lage, komplette Abgassysteme zu konstruieren und zu liefern. BOA-Abgassysteme sind heute weltweit im Einsatz und haben für den Kunden folgenden Nutzen:

- Ein Ansprechpartner, dadurch Reduzierung der Anzahl Lieferanten
- Kompakte Bauweise
- Grosse Kosteneinsparungen aufgrund schneller Montage und 50% Gewichteinsparung
- Optimales, interaktives Design dank moderner Entwicklungstools mit 3D-CAD und ANSIS-FE-Berechnungsprogramm
- Minimierung der Schnittstellen, dadurch ist das System 100% dicht
- Effizientes Benchmarking bei BOA

Abgasleitung Baukastensystem 12/18/20

Neben den kompletten Abgassystemen konstruieren wir auch speziell den Kundenbedürfnissen der Diesel- und Gasmotorenhersteller angepasste Kompensatoren:

Kompensator mit V-Klemmflanschen

Kompensator mit Spezialflanschen

Kompensator mit gebogenen Rohren

4.2 Raum- und Luftfahrt

BOA hat ihre jahrzehntelangen Erfahrungen in den diversen Bereichen von flexiblen Verbindungen auch in der Raum- und Luftfahrt erfolgreich umsetzen können. Der mehrlagige Kompensator hat für die Kunden in diesem Bereich folgenden Nutzen:

- Kleines Gewicht durch kurze Baulänge, kleine Verstellraten und spezielle Schweissverbindungen
- Durch die hohe Schweisskompetenz von BOA können entsprechend den hohen Anforderungen in diesem Bereich verschiedenste Materialien eingesetzt werden.
- Effiziente Schwingungsdämpfung

BOA ist dank hohem Qualitätsstandard, einem eigenen Labor und modernsten Berechnungsmodulen heute in der Lage, mit Ihnen zusammen Problemlösungen anzupacken. BOA ist zertifiziert nach EN 9100.

 $Schwingungsentkopplungseinheit \ f\"ur\ Hubschrauber$

4.3 Stromverteilung

Durch langjährige Zusammenarbeit mit den führenden Herstellern von SF6-Schaltanlagen hat BOA für diesen speziellen Markt verschiedene Typen und Verfahren entwickelt. Diese langjährige Erfahrung bringt dem Kunden folgenden Nutzen:

- Weltweite Zertifizierung nach GIS/GIL-Richtlinien
- Kosteneinsparung durch Verbindung des austenitischen Balges mit Alu-Flanschen
- Keine nachträgliche Reinigung da Sauberkeit nach SF6-Richtlinien

Axialkompensator mit Alu-Flanschen

Druckentlasteter Axialkompensator für SF6-Schaltanlage

4.4 Haustechnik

Nicht nur im Bau von Industrieanlagen und grossen öffentlichen Gebäuden, sondern selbst im privaten Wohnungsbau sind die verlegten Rohrstränge der Zentralwasserheizung ein Ausdehnungsproblem, das es zu kompensieren gilt. Die recht bedeutenden Rohrlängen erzeugen Dehnungen, die sich nicht mehr einfach durch Richtungsänderungen der Leitung beheben lassen. In den kürzeren Hauptsträngen kommen Axial-kompensatoren zur Anwendung, in Fällen von langen geraden Hauptleitungen kommen Gelenk- und Winkelkompensatoren zum Einsatz. Für den Anwendungsfall Haustechnik kommt meistens das BOA Standard-Kompensatoren-Programm zum Einsatz.

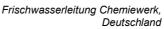
Axialkompensator Typ W

Kleinkompensator Typ Za

Angularkompensator Typ AW

Schwingungsdämpfer Typ Alpha-C

4.5 Wasserbau


Im Bereich Wasserbau kommen vorwiegend BOA-Ausbaustücke zum Einsatz. Gegenüber Standard-Ausbaustücken haben jene von BOA folgenden Vorteile für den Kunden:

- Reduktion der Montagezeit um 50%
- Schnelle Verfügbarkeit der Anlage durch Ausnützung der Federkraft des Balges
- 100% dicht da keine Gummielemente verwendet werden (keine Alterung)
- Kostengünstige Ausführung mit mediumberührten Teilen aus nicht rostendem austenitischem Material
- Aufnahme von Montageversatz ohne Dichtheitsprobleme möglich

Der langjährige Einsatz der BOA-Ausbaustücke beweist den oben erwähnten Nutzen.

Wasserversorgung Stadt Zürich, Schweiz

4.6 Anlagenbau, allgemeiner Rohrleitungsbau

Lateral- und Angularkompensatoren

Wohl auf keinem Gebiet wie demjenigen des Anlagenbaus respektive allgemeinen Rohrleitungsbaus werden mehr Kompensatoren eingebaut. So werden z.B. BOA-Kompensatoren erfolgreich in Chemiewerken, thermischen Kraftwerken, petrochemischen Anlagen und Fernheizkraftwerken eingesetzt.

Im Anlagenbau werden meistens BOA Standard-Kompensatoren eingesetzt. Als Dienstleistung für den Rohrleitungsbauer kann BOA Festigkeitsberechnungen mit dem Rohrleitungs-Berechnungsprogramm Caesar II anbieten. Dadurch können Anlagenkosten optimiert und der störungsfreie Betrieb gewährleistet werden.

4.7 Pumpen und Kompressoren

Schwingungen/Vibrationen, die durch Pumpen, Kompressoren, Brenner, Armaturen usw. verursacht und in die Rohrleitung eingeleitet werden, erzeugen nicht nur lästigen Lärm, sondern sie beanspruchen auch in hohem Masse die den Vibrationen unterworfenen Materialien. Deswegen kommen in diesem Bereich vorwiegend BOA Schwingungsdämpfer (Metall oder Gummi) zum Einsatz. Mit dem umfangreichen Programm der Metall- und Gummischwingungsdämpfer können praktisch alle Anwendungsbereiche von Pumpen und Kompressoren abgedeckt werden.

Gummi- und Metallschwingungsdämpfer

Pumpstation mit Schwingungsdämpfern

4.8 Gasturbinen

Für den Einsatz in Gasturbinen werden besonders druckentlastete Kompensatoren eingesetzt um die zulässigen Spannungen bei den Übergangsstutzen zwischen der Rohrleitung und dem Aggregat nicht zu überschreiten. Ebenfalls verspannte (Lateral-/Angular-) Kompensatoren werden zwischen Turbine und Kondensator eingesetzt.

Druckentlastete Kompensatoren

BOA Kompensatorenratgeber

5 Anhang/ Normen

5.1 Symbole im Rohrleitungsbau

	Axial-Kompensator		Apparate (ohne rotierende Teile)
	Angular—Kompensator		Apparate (mit rotierenden Teilen)
	Universal—Kompensator		Muffen—Verbindung
	Lateral-Kompensator		Flansch—Verbindung
	Kardan—Kompensator		Verschraubung (Holländer)
	Druckentlasteter	+	Kupplung
	Kompensator	$\overline{}$	Fixpunkt
	Leitung unisoliert		Rohrhalterung stehend
	Leitung isoliert		Rohrhalterung hängend
	flexible Leitung		federnde Aufhängung
\rightarrow	Leitung mit Angabe der Flussrichtung		federnde Stützung
1	Kreuzung zweier Leitungen ohne Verbindung		gleitende Führung
<u> </u>	Kreuzung zweier Leitungen mit Verbindung		Rohrgleitlager hängend
	Abzweigstelle mit Verbindur	ng <u>Å</u>	Rohrgleitlager auf Rollen

5.2 Tabelle über Richtanalysen und Festigkeitskennwerte

	DINEN	DIN EN 10027	Kurzname nach DIN 17006 (alt)	tion	Grenz- temp.	Streck- grenze min.	Zugfestig- keit	10000	Bruc	Bruch- dehnung min.
	10027					ReH/Rp0.2	* &		A	A _s A _{so}
2	L	-			٥.	N/mm²	N/mm²		%	
Unlegierter Stahl	1.0254	P235T1 C22G1	St 37.0 C 22.3	DIN EN 10217 DIN EN 10216	300	235 240	350-480 410-540		23	23
Allgemeiner Baustahl	1.0038 1.0050 1.0570	S235JRG2 E295 S355J2G3	St 37-2 St 50-2 St 52-3	DIN EN 10025	300	235 295 355	340-470 470-610 490-630		21-26 16-20 17-22	21-26 16-20 17-22
Warmfester unlegierter Stahl	1.0460	C22G2	C 22.8	VdTÜV-W 350	480	240	410-540	100	20	20
Warmfester Stahl	1.0305 1.0345 1.0425 1.0481 1.5415 1.7335	P235G1TH P235GH P265GH P295GH 16M03 13CfM04-5	St 35.8 H I H II 17 Mn4 15 Mo 3 13 CMlo 4 4 10 CMlo 9 10	DIN 17175 DIN EN 10028 T1/T2	480 480 480 500 530 570 600	235 235 265 295 275 300 310	360-480 360-480 410-530 460-580 440-590 440-590 480-630		23 22 24 24 18	23 22 22 24 20 18
Nichtrosten- der austeni- tischer Stahl	1.4301 1.4306 1.4541 1.4571 1.4404 1.4435 1.4465 1.4539 1.4539	X5CNI18-10 X2CNI19-11 X6CNI118-10 X6CNIMOT17-12-2 X2CNIMO17-12-2 X2CNIMO18-14-3 X1CNIMONX5-25-2 X1NICMOCU25-20-5 X1NICMOCU25-20-7	X 5 CrNi 18 10 X 2 CrNi 19 11 X 6 CrNiT 18 10 X 6 CrNiMoTi 17 12 2 X 2 CrNiMo 17 12 2 X 2 CrNiMo 17 12 3 X 2 CrNiMo 18 14 3 X 2 CrNiMo 25 25 2 X 2 NICMOCU 25 20 5	DIN EN 10088 SEW 400 VdTÜV-W 421 VdTÜV-W 502	550 550 550 550 550 550 550 400	230 200 220 240 240 240 240 255 256 220 300	540-750 520-670 520-720 540-690 530-680 550-700 540-740 520-720 600-800		45 40 40 40 40 40 40	45 45 45 45 40 40 40 40 40 40 30 40 40 40
Hochwarm- fester auste- nitischer Stahl	1.4948 1.4919 1.4958	X6CrNi18-11 X6CrNiM017-13 X5NiCrATT31-20	X 6 CrNi 18 11 X 6 CrNiMo 17 13 X 5 NICrAITI 31 20	DIN 17459	600	185 205 170	500-700 490-690 500-750	15	40 35 35	40 38 35 33 35 33
Hitzebestän- diger Stahl	1.4828 1.4876 (1.4876H)	X15CrNiSi20-12 (AISI 309) X10NiCrATT32-21 Incoloy 800 X10NiCrATT32-20	X 15 CrNiSi 20 12 UNS N 08800 ASTM B409/408/407 UNS N 08810	DIN EN 10095 DIN EN 10095 VQTÜV-W 412 VQTÜV-W 434	1000 600	230 210 170	500-750 500-750 450-700		3 3 23	30

				 Festigkeitswerte bei Raumtemperatur 	e bei Raur	ntemperatur		(Fo	rtsetzun	(Fortsetzung von Tab. 1)
Werkstoff- Gruppe	Werkstoff- Nr. nach DIN EN	Kurzname nach DIN EN 10027	Kurzname nach DIN 17006 (alt)	Dokumenta- tion	Obere Grenz- temp.	Streck- grenze min.	Zugfestig- keit	Bruch- dehnung min.	min.	Kerbschlag- zähigkeit min.
						ReH/Rpg2	~	Ae	Aeo	AV (KV)
	Е	- C	3	E.	၁့	N/mm²	N/mm²	%	%	٦
Nickelbasis-	2.4360	NICU 30 Fe	UNS N 04400	DIN 17750	425	195	≤ 485	35		80 / 20°C
negiei dingeri	2.4602	NICr 21 Mo 14 W	UNS N 06022	COZWY-VOIDY	009	310	069 ₹	45		150 / 20°C
	2.4605	NICr 23 Mo 16 AI	UNS N 06059	S74VV-VOIDV	450	340	> 690	40		225 / 20°C
	2.4610	NiMo 16 Cr 16 Ti	AS I M B5/5/5/4/622 UNS N 06455	DIN 17750	400	305	> 700	35		96 / 20°C
	2.4816	NICY 15 Fe	AS IM D3/3/3/4/622 UNS N 06600	DIN EN 10095	450	200	550-750	30		150 / 20°C
	2.4819	NIMO 16 Cr 15 W	UNS N 10276	DIN 17750	800	310	≥ 750	30		
	2.4856	NICr 22 Mo 9 Nb	UNS N 06625	DIN EN 10095	009	410	≥ 800	30		100 / 20°C
	2.4858	Alloy 825 Alloy 825	ASTM B424/425/423	Val OV-W439 DIN EN 17750 V4TÜV-W432	450	225	550-750	30		80 / 20°C
Reinnickel	2.4068	LC-Ni 99.2	UNS N 02201 ASTM B162/160/161	DIN EN 17750 VdTÜV-W345	009	80	340-450	40		
Kupfer	2.0090	SF-Cu		DIN 17670	250	45	>200	42		
Kupferzinn- Legierungen	2.1020	CuSn6 (Bronze) CuSn8	UNS ~ C 51900 UNS C 52100	DIN 17670 DIN 17670	250	300	350-410 370-450	55		
Kupferzink- Legierungen	2.0250	CuZn20 CuZn37 (Messing)	UNS C 24000 UNS C 27200	DIN 17670 DIN 17670		≤150 ≤180	270-320 300-370	48		
Kupferberyl- lium- Legierungen	2.1247	CuBe2		DIN 17670		<u><250</u>	390-520	35		
Aluminium	3.0255	Al 99.5		DIN 1712		<55	65-95	40		
Aluminium- Knetlegie- rungen	3.3535	AIMg 3 AIMgSi 1		DIN 1725 DIN 1725	150	80 ≤85	190-230 ≤150	18		
Titan	3.7025	T		DIN 17850 VdTÜV-W230	250	180	290-410	30		62
Tantal		Та		VdTÜV-W382	250	150	> 225	35		

Deutschland		USA		Grossbritannien	Frankreich	Russland
Werkstoff-Nr.	Kurzname	Norm UNS / ASTM	Grad	Bezeichnung	Bezeichnung	Bezeichnung
1.0254 1.0427	P235T1 C22G1	~ A106 /A53	A	~ S360 (S,ERW)		K 10
1.0038 1.0050 1.0570	S235JRG2 E295 S355J2G3	A252 /A500 /A570 ~ A714	3	En 40 B E 295 En 50 D	S235JRG2 A50-2 S355J2G3	~ St 3 ps ~ St 5 ps ~ 17GS / 17 G1S
1.0460	C22G2					100
1.0305 1.0345 1.0425 1.0481 1.5415 1.7335	P235G1TH P235GH P265GH P295GH 16Mo3 13CnMo4-5	A106/A178/A179/A53 K 02202/A286/A414 K 02402/A283/A285 A106/A414/A555/A662 A204 A182/A234/A387	A B. C C, F, E, B A, B, C F F22	~ 320/ ~ 360 141 - 360 151 - 400 224 - 460 B 16 Mo 3 / ~ 243 13 CMO 4 - 5/ ~ 620 10 CMO 9 - 10/ ~ 622	A 37 CP A 42 CP A 48 CP 15 D 3 13 CrMo 4-5 10 CrMo 9-10	- 12ChM / ~ 15 ChM
1.4301 1.4306 1.4404 1.4465 1.465 1.4529 1.4539 1.4541	X5CrNi18-10 X2CrNi19-11 X2CrNiMo17-12-2 X2CrNiMo18-14-3 X1CrNiMoN25-25-2 X1NiCrMoCuN25-20-7 X1NiCrMoCuN25-20-5 X6CrNIT18-10 X6CrNIT18-10	AISI 304 AISI 304 L AISI 316 L AISI 316 L N 08310 A 351 N 08904 AISI 321		304 S 15 304 S 11 316 S 11 316 S 13 - - 904 S 13 321 S 13 320 S 31	Z6 CN 18-09 Z2 CN 18-10 Z2 CN 17-12 Z3 CND 17-12-03 Z2 NCDU 25-20 Z6 CNT 18-10 Z6 CNT 17-12	08Ch18N10 03Ch18N11 - 03Ch17N14M3 02Ch25N22AM2-PT 08Ch18N10T
1.4948 1.4919 1.4958	X6CrNi18-11 X6CrNiMo17-13 X5NiCrAITi31-20	AISI 304H / S30480 AISI 316 H		304 S 51 316 S 50 – 53 NA 15 H	Z8 NC 33-21	
1.4828 1.4876 (1.4876H)	X15CrNISI20-12 X10NICrAITi32-21 X10NICrAITi32-20	AISI 309 N 08800/B409/408/407 N 08810/B409/408/407				
2.4360 2.4602 2.4610 2.4816 2.4856 2.4856	NICU 30 Fe NICT 21 Mo 14 W NIMO 16 CT 16 TI NICT 15 Fe NIMO 16 CT 15 W NICT 22 MO 9 ND NICT 21 MO	N 04400/B127/B164/B165 N 06022/B576/B622/B574 N 06455/B575/B574/B622 N 06600/B168/B166/B167 N 10276/B575/B574/B622 N 06625/B443/B44/B446 N 08625/B424/B425/B423				

5.4 Umrechnungstafeln

5.4.1 Druck

		Druckei	nheiten der Vak	uumtechnik	
	mbar	Pa (Nm ⁻²)	dyn cm ⁻² (μb)	Torr (mm Hg)	micron (µ)
mbar	1	100	1000	0.75	750
Pa (Nm ⁻²)	1 · 10 ⁻²	1	10	7.5 · 10 ⁻³	7.5
dyn cm ⁻² (μb)	1 · 10 ⁻³	0.1	1	7.5 · 10 ⁻⁴	0.75
Torr (mm Hg)	1.33	1.33 · 10 ²	1.33 · 10 ³	1	1000
micron (μ)	1.33 · 10 ⁻³	1.33 · 10 ⁻¹	1.33	1 · 10 ⁻³	1
bar	1 · 10 ³	1 · 10 ⁵	1 · 10 ⁶	750	7.5 · 10 ⁵
atm	1013	1.01 · 10 ⁵	1.06 · 10 ⁶	760	7.6 · 10 ⁵
at (kp cm ⁻²)	981	9.81 · 10 ⁴	9.81 · 10 ⁵	735.6	7.36 · 10 ⁵
mm WS (kp m ⁻²)	9.81 · 10 ⁻²	9.81	98.1	7.36 · 10 ⁻²	73.6
psi	68.9	6.89 · 10 ³	6.89 · 10 ⁴	51.71	5.17 · 10 ⁴

	Allgemeine Druckeinheiten				
	bar	atm	at (kp cm ⁻²)	mm WS (kp m ⁻²)	psi
mbar	1 · 10 ⁻³	9.87 · 10 ⁻⁴	1.02 · 10 ⁻³	10.2	1.45 · 10 ⁻²
Pa (Nm ⁻²)	1 · 10 ⁻⁵	9.87 · 10 ⁻⁶	1.02 · 10 ⁻⁵	0.102	1.45 · 10 ⁻⁴
dyn cm ⁻² (μb)	1 · 10 ⁻⁶	9.87 · 10 ⁻⁷	1.02 · 10 ⁻⁶	1.02 · 10 ⁻²	1.45 · 10 ⁻⁵
Torr (mm Hg)	1.33 · 10 ⁻³	1.32 · 10 ⁻³	1.36 · 10 ⁻³	13.6	1.93 · 10 ⁻²
micron (µ)	1.33 · 10 ⁻⁶	1.32 · 10 ⁻⁶	1.36 · 10 ⁻⁶	1.36 · 10 ⁻²	1.93 · 10 ⁻⁵
bar	1	0.987	1.02	1.02 · 10 ⁴	14.5
atm	1.013	1	1.03	1.03 · 10 ⁴	14.7
at (kp cm ⁻²)	0.981	0.968	1	1 · 10 ⁴	14.22
mm WS (kp m ⁻²)	9.81 · 10 ⁻⁵	9.68 · 10 ⁻⁵	1 · 10-4	1	1.42 · 10 ⁻³
psi	6.89 · 10 ⁻²	6.8 · 10 ⁻²	7.02 · 10 ⁻²	702	1

1 kp	9.81 N	
1 at	0.981 bar	
1 kpm	9.81 Nm	
1 kp /mm²	9.81 N /mm ²	
1 Mpa	1 · 10 ⁶ Pa	= 10 bar
1 bar	1 · 10⁵ Pa	= 100 kPA

0.1 N /mm ²	14.5038 lb /inch ²	
1 kp / cm²	14.2233 lb /inch ²	
1 Pascal	14.5038 · 10 ⁻⁵ lb /inch ²	
1 kPascal	14.5038 · 10 ⁻² lb /inch ²	
1 Millipascal	14.5038 · 10 ⁻⁸ lb /inch ²	
1 bar	14.5038 lb /inch ²	

5.4.2 Weitere Umrechnungstabellen

Durchflussleistung

	Umrechnung	Umrechnung von Einheiten der Durchflussleistung					
	mbar I s ⁻¹ Pa m ³ s ⁻¹ Torr I s ⁻¹ atm cm ³ s ⁻¹ lusec						
mbar I s ⁻¹	1	1 · 10 ⁻¹	7.5 · 10 ⁻¹	9.87 · 10 ⁻¹	7.5 · 10 ²		
Pa m³ s ⁻¹	10	1	7.5	9.87	7.5 · 10 ³		
Torr I s ⁻¹	1.33	1.33 · 10 ⁻¹	1	1.32	1 · 10 ³		
atm cm³ s ⁻¹	1.01	1.01 · 10 ⁻¹	7.6 · 10 ⁻¹	1	7.6 · 10 ²		
lusec	1.33 · 10 ⁻³	1.33 · 10 ⁻⁴	1 · 10 ⁻³	1.32 · 10 ⁻³	1		

Temperatur

	° C	°F	° K
° C	1	⁵ / ₉ (°F-32)	K-273.15
°F	⁹ / ₅ °C+32	1	⁹ / ₅ K-459.67
°K	°C+273.15	⁵ / ₉ (°F+459.67)	1

Länge

Lange				
	mm	m	inch	feet
mm	1	0.001	0.03937	0.00328
m	1000	1	39.3701	3.2808
inch	25.4	0.0254	1	0.0833
feet	304.8	0.3048	12	1

Fläche

	mm²	m²	inch ²	feet ²
mm ²	1	1 · 10 ⁻⁶	0.00155	1.0764 · 10 ⁻⁵
m²	1 · 10 ⁶	1	1550	10.7639
inch ²	645.16	6.452 · 10 ⁻⁴	1	6.944 · 10 ⁻³
feet ²	92903	0.092903	144	1

Volumen

	mm³	cm ³	m³	inch ³	feet ³
mm³	1	0.001	1 · 10 ⁻⁹	6.1 · 10 ⁻⁵	3.531 · 10 ⁻⁸
cm ³	1000	1	1 · 10 ⁻⁶	0.061	3.531 · 10 ⁻⁵
m³	1 · 10 ⁹	1 · 10 ⁶	1	61023.7	35.3147
inch ³	16389	16.387	1.6387 · 10 ⁻⁵	1	5.787· 10 ⁻⁴
feet ³	2.832 · 10 ⁷	2.832 · 10 ⁴	0.0283169	1728	1

29

Masse

	kg	pound
kg	1	2.20462
pound	0.453592	1

Kraft

	kp	N	Dyn	lbf
kp	1	9.80665	980665	2.20462
N	0.101972	1	1 · 10 ⁵	0.224809
Dyn	1.01972 · 10 ⁻⁶	1 · 10 ⁻⁵	1	2.24809 · 10 ⁻⁶
lbf	0.453592	4.44822	444822	1

spezifische Masse

spezilische Mass	<u> </u>			
	g/m³	kg/m³	lb/inch ³	lb/ft³
g/m³	1	0.001	3.61273 · 10 ⁻⁸	6.2428 · 10 ⁻⁵
kg/m³	1000	1	3.61273 · 10 ⁻⁵	0.062428
lb/inch ³	2.76799 · 10 ⁷	27679.9	1	1728
lb/ft³	16018.5	16.0185	578.704 · 10 ⁻⁶	1

Momente

	Nm	kp · m	lbf ⋅ ft	lbf · inch
Nm	1	0.101972	0.737561	8.85073
kp · m	9.80665	1	7.233	86.796
lbf · ft	1.35582	0.138255	1	12
lbf · inch	0.112985	0.0115213	0.08333	1

Federraten

	N/mm	kg/mm	lb/inch
N/mm	1	0.101972	5.7101
kg/mm	10.1972	1	55.991
lb/inch	0.1751	0.01786	1

Beschleunigung

	m/s²	ft/s²	inch/s²
m/s²	1	3.28084	39.3701
ft/s ²	0.3048	1	12
inch/s²	0.0254	0.083333	1

5.5 Korrosion

5.5.1 Technische Information

Sämtliche Informationen, Daten und Tabellen basieren auf Angaben und Unterlagen der Rohstoffhersteller oder unseren langjährigen Erfahrungen aus der Praxis. Sie erheben keinen Anspruch auf Vollständigkeit und verstehen sich ausdrücklich als Empfehlungen, für die keine Haftung übernommen werden kann. Dem Anwender unserer Produkte wird empfohlen bei Unsicherheiten für den vorgesehenen Verwendungszweck jeweils eigene Prüfungen durchzuführen.

Unter anderem ist zu beachten, dass alle Angaben, welche Chemikalien betreffen, von analytisch reinen Stoffen und nie von Mediengemischen ausgehen. Es sind alle Randbedingungen zu beachten.

Oft ist das chemische Verhalten eines Schlauch- oder eines Metallbalgwerkstoffes auch vom vorgeschalteten Rohrwerkstoff abhängig. Es müssen alle dem Medium ausgesetzten Flächen beachtet werden. Das heisst, ist Korrosionsneigung vorhanden, jedoch die zu korrodierende Fläche sehr klein, so kann der Korrosionsangriff sehr schnell in die Tiefe gehen.

Deckschichten, Ablagerungen, ferritische Sägespäne, etc. können sowohl korrosionshemmend (z.B. dicke Deckschichten) als auch korrosionsfördernd wirken (z.B. mit Chloriden angereicherte Ablagerungen). Ferritische Sägespäne können sogar als echte Korrosionsstarter bezeichnet werden

Jeglicher Rechtsanspruch aufgrund der Angaben in diesen Unterlagen kann weder ausdrücklich, noch stillschweigend abgeleitet werden.

Erklärung zu nachfolgender Korrosionstabelle

Die Korrosionsgeschwindigkeit wird in Gewichtsminderung pro Oberflächen- und Zeiteinheit, z.B. g/mm²h, oder als Dickenreduzierung pro Zeiteinheit, z.B. mm/Jahr, angegeben. Die Korrosionsgeschwindigkeit wird bei Laborversuchen angewendet, während die Dickenreduzierung für praktische Beurteilungen wesentlich anschaulicher ist.

In den Tabellen der nachfolgenden Seiten wird die Korrosionsgeschwindigkeit respektive das Korrosionsverhalten der verschiedenen Werkstoffe, bei ebenmässigem Korrosionsangriff, in Beständigkeitsstufen von 0 – 3 eingeteilt. Die Bedeutung der Stufen kann der folgenden Übersicht entnommen werden:

.

Beständigkeitsstufe	Dickenabnahme	Beständigkeit
	mm/Jahr	
0	<u><</u> 0.11	Unter normalen Betriebsbedingungen vollkommen beständig.
1	>0.11 <u><</u> 1.1	In vielen Fällen unter normalen Betriebsbedingungen beständig, jedoch nur dann zu verwenden, wenn besondere andere Werkstoffeigenschaften den Einsatz eines Werkstoffes der Stufe 0 nicht zulassen.
2	>1.1 <u><</u> 11.0	Beständigkeit mässig. Verwendung nur in Ausnahmefällen möglich.
3	>11	Unbeständig. Verwendung keinesfalls möglich.

Bedeutung der Abkürzungen in den Tabellen

L = Gefahr von Lochfrasskorrosion S = Gefahr von Spannungsrisskorrosion

Schm = geschmolzen, Schmelze Konz = Konzentrierte Substanz SP = siedend (Siedepunkt) tr = trocken (wasserfrei)

feucht fe wh = wasserhaltig wL wässrige Lösung gesättigt aes = kalt gesättigt kg heiss gesättigt hg > 50 grösser als 50 kleiner oder gleich 50 = <u><</u> 50 = <u><</u> 0.1 kleiner oder gleich 0.1

() = Unterschiedliche Literaturangaben oder unsichere Werte

Erläuterungen zu den Korrosionsarten

Lochfrasskorrosion

Lochfrass ist eine spezielle Korrosionsart in halogenhaltigen Elektrolyten. Die Gefahr zur Lochfrassbildung hängt von mehreren Faktoren ab.

Die Lochfrassneigung nimmt zu mit

- steigender Konzentration der Chlorionen
- steigender Temperatur
- steigendem elektrochemischem Potential des Stahles in dem betreffenden Elektrolyten

Die Lochfrassneigung wird abgeschwächt durch

- Zugabe von Molybdän (steigende Gehalte an Molybdän im Stahl verringert die Lochfrassgefahr, gemeint sind Mo-Gehalte über 2 bis etwa 5%)
- höhere Gehalte an Chrom. Je höher der Chromgehalt ist (>20 %) desto wirkungsvoller ist bereits eine geringe Menge an Molybdän

Lochfrassbehinderung

- Absenkung des elektrochemischen Potentials in dem betreffenden Elektrolyten, z.B. durch "Kathodischen Schutz".

Spannungsrisskorrosion

Spannungsrisskorrosion (SpRK) gehört zu den Korrosionsarten, welche zur Auslösung mehrere Faktoren gleichzeitig benötigen:

- ein spezifisches Angriffsmittel z.B.
- Chloride oder alkalische Medien
- kritische Systemparameter (Temperatur, Konzentration, Grenzspannung)
- einen für SpRK anfälligen Werkstoff
- statische und/oder dynamische mechanische Zugbelastung

Die SpRK ist eine der unangenehmsten Formen der Korrosion, da sie meist unvermittelt und sehr schnell zu Rissschäden an Bauteilen jeglicher Art führt. Das typische Erscheinungsbild ist je nach Legierungssystem und Angriffsmittel inter- oder transkristalline, verformungslos verlaufende, meist verzweigte Risse. Oft erfolgt am Ende des Risses ein Gewaltbruch des Bauteils.

Bekannt ist auch SpRK ausgehend von Lochfrasskorrosion, immer jedoch von einer örtlichen, aktiven Schwachstelle. Bei NE-Metallen kann die SpRK in gleicher Weise wie bei austenitischen Werkstoffen verlaufen.

5.5.2 Tabelle der Widerstandsfähigkeit gegen Korrosion

Medium		Konzentration %	Temperatur °C	Unlegierte Stähle	18/8-Stahl	18/8+Mo-Stahl	Nickel	Monel 400 2.4360	Inconel 600 2.4816	Incoloy 825 2.4858	Hastelloy C 2.4819	Kupfer	Tombak	Bronze	Titan	Aluminium
Abgase (Diesel) (Rauchgase)	tr tr		600 600 900 1100	3 3 3 3	OL OL	OL OL	0	0	0 0 0 0	0 0 0	0 0 0 0					1 3
Abwässer (ohne H ₂ S0 ₄) (mit H ₂ S0 ₄)			<40 <40	3	0	0	0	0	0	0	0	2 3	3	2 3	0	3
Acetaldehyd		100 100 98 99	20 SP <54 <40	1	1	0	0	0 0 0	0 0 0	0 0 0 0	0 0 0	1 2	1 3	1 2	0	0
Acetanilid (Antifebrin)			<114							-			0	•		0
Acetat Aceton Acetylchlorid		100 100 alle	20 20 SP <sp 20</sp 	1 1 1	0 0L 0L 1L	0 0L 0L 0L	0 0 0	0 1 1	0 0 0	0 0 0	0 0 0	0 0 1	0 0 1	0 0 1	0 0	0 0
Acetylen	tr tr fe	100	SP 20 200 20	0 2	1L 0	0L 0	0 2	0	2	2		3	3	3	0	0 0 1
Acetylendichlorid	tr wL tr tr Schm fe	100 5 100 100 100 100	<150 20 20 SP 700 20		1L 2L	0L 1L	0 0	0 0	0 0 0 0	0 0	0 0 0 0					0 3 0 0 3 3
Acetylzellulose		<100	20				1	1	1	0						0
Adipinsäure		alle	100 200		0	0 0										
Agfa Glyzin Aethan	ļ		20 20	2	0	0										0
Aether		100 100 alle	20 SP SP		0 0 0	0 0		0 0 0			1	0 0 0	0 0 0			0
Aetherische Öle: Eukalyptussöl Kümmelöl Zitronenöl			SP 20 20		0 0 0	0 0	0 0 0	0 0 0	0 0 0	0 0 0						0 0 0
Aethylacetat		alle 35 100 100	20 <sp 120 20 SP</sp 	1 1 1 1	0 0 0 0	0 0 0 0	2 2 2 2	1 1 1 1			1 1 0 1	0 2 2 0 2	2 2 1 2	0 2 2 0 2	0	1
Aethylaether		100 100 alle	20 SP SP		0 0 0	0 0 0		0 0 0			1	0 0 0	0 0 0			0
Aethylalkohol denaturiert		100 96 96	20 20 SP	0 1 2	0 0 0	0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0	0	0	0 0 0	0 0
Aethylbenzol Aethylchlorid			115 20	0	0 0L	0 0L	0	0	0	0	<u>0</u>	2	2	2	0	0 1
	tr tr fe wL wL wL wL	25 50 70 100 5	SP 20 SP SP 20 25 25 25 25	0	OL OL OL OL	OL OL OL OL	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	1 1 1 1 1 1 1 1 0	3	2 3	3	0 0 0 0 0 0	0 1 3
Aethlyen Aethlyenbromid			20 20		0 0L	0 0L										0
Aethylenchlorid	tr wL tr	100 100 100	SP 20 50	0 3	OL OL 1L OL	OL OL 1L OL		0	2	0	1	2	3	2	0 0 0	3 0 3 0

		1			1	ī		1	_	1		1	1			_
Medium		Konzentration %	Temperatur °C	Unlegierte Stähle	18/8-Stahl	18/8+Mo-Stahl	Nickel	Monel 400 2.4360	Inconel 600 2.4816	Incoloy 825 2.4858	Hastelloy C 2.4819	Kupfer	Tombak	Bronze	Titan	Aluminium
	fe	100	20													3
Aethylendichlorid	wL tr	100 <100	SP <30	0	0L	0L	0	0	0	0					0	3
Aethyleridichlorid	tr	100	SP	U	0L	0L	U	U	U	U					0	1
		<100	<700													3
	wh wh	1:1	105 <sp< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td></sp<>													3
Aethylendiamin-		100	SP	3						2						
Aethylenglykol		100 100	20 120	0	0	0	1	1	1	0		1	2	2		0
Aethylenoxid			20		0	0										0
Aethylglykol		0.5	20 20	1	0	0		0								1
Aktivin (Chloramin)		0.5 0.5	SP	3 3	1L 1L	OL OL		0 0								3
Alanin			20		0	0										0
Alaun	wL	100 10	20 20	2 2	0	0 0			2	0	0 1	2	3	3		1 1
	wL	10	<80	3	0	0					1					
	wL	10	SP SP	3 3	1 2	0					1					
Allylalkohol		hg 100	25	3		1	0	0	0	0	1					\vdash
		100	SP								1					
Allylchlorid Aluminium	Schm	100 100	25 750	3	3	3	3	3	0	0		3	3	3		-
Aluminiumacetat	wL	3	20	3	0	0					0			<u> </u>		0
	wL	100	100	3	0	0					1					
	wL wL	alle kg	20 20		0	0	0	2	2	2	1 1					
	wL	kg	SP		0	0					1					
Aluminiumchlorid	wL	hg 5	SP 20	3	0 2L	0 1L	1	1	1	1	0	2	3	2	0	2
Administrations	WL	5	50	3	2L	1L	1	1	1	1	0	3	3	3	0	
		5	100	3	01	01	,				0	_	•	•	0	_
		10 10	20 100	3 3	3L	2L	1	1	1	1	0	3	3	3	0	3
		10	150	3											0	
		20 20	20 150	3 3			1	1	1	1	1	3	3	3	3	
		25	20	3	3L	2L	1	1	1	1	0	3	3	3	0	
		25	60	3											0	
		25 30	100 150	3 3											2	
		40	122	3											3	
Aluminiumfluorid	wL	80 5	100 25	3	2	2		1		0		0			3	
	wL	10	25	3	3	3	1	1			1	1			0	0
Aluminiumformiat Aluminiumhydroxid		ges	20 20	1	0	0		1		0		0	<u>3</u> 0	<u>3</u> 0	0	0
Aldminiumiyaroxia		ges	SP	2	0	0		'		U		U	U	U	0	U
	wL	2	20	3	0	0		1		0	0	0			0	1
Aluminium-Na-Sulfat	wL wL	10 10	20 <sp< td=""><td>3</td><td>0</td><td>0</td><td></td><td>1</td><td></td><td>0</td><td>1</td><td>0</td><td></td><td></td><td>0</td><td>1</td></sp<>	3	0	0		1		0	1	0			0	1
Aluminiumnitrat			20		0	0										
	wL wL	10 10	20 50		0	0										2 3
Aluminiumoxyd	WE	10	20	1	0	0	0	0	0	0	0	0	0	0	0	2
Aluminiumsulfat	wL	10 10	20 SP	3 3	0 1	0	0	0 2	0 1	0 1	0 1	2 3	2	1 3	0	3
		50	SP	3	2	1	1	2	'	'	0	3	3	3	3	3
Ameisensäure		10	20	3	0	0	0		0	0	0					0
		10 50	SP 20	3 3	1 0	0 0	2		0	0 0	0 0					3
		50	SP	3	3	1				0	0					
		80 80	20 SP	3 3	0	0 2		2 2	0 1	0 0	0 0	1 0				0 2
		100	20	3	0	0		3	'	U	0	1	1	1		0
A	4.	100	SP	3	1	1		3			0					ليل
Ammoniak	tr fe	10	20 20	0	0	0	2	1	0	0 0	0 0	0 3	0 3	0 3	0	0
	wL	10	20		0	0	0	0		0	0	3	3	3	0	
	wL wL	10 30	SP 20		0	0	3			1 0	1 0				0	
	wL	30	SP		0	0				1	1					
	wL	50 50	20 SP		0	0 0				0 1	0 1					
l	wL	50	SP		ı	ı	ı			1	1	ı			ı	, ,

Medium		Konzentration %	Temperatur °C	Unlegierte Stähle	18/8-Stahl	18/8+Mo-Stahl	Nickel	Monel 400 2.4360	Inconel 600 2.4816	Incoloy 825 2.4858	Hastelloy C 2.4819	Kupfer	Tombak	Bronze	Titan	Aluminium
	wL	100	20	0	0	0				0	0					
Ammoniumalaun	wL wL	100 100	SP 20	3	0	0				1	1					
Ammoniumbicarbonat	wL	100 alle	SP 20	3	3	2		2	2	1		3	3	3	0	0
	wL	alle	heiss		0	0		2	2	0		3	3	3	0	0
Ammoniumbifluorid	wL	100 20	20 80	3 3	0	0 0					0 0					
Ammoniumbromid	wL wL	5 10	25 SP	3 3	0 1LS	0 1LS		2			0	3	3	3		2
	wL wL	10	25	3	1LS	1LS					1					3
Ammoniumcarbonat	wL wL	20 20	20 SP	0	0	0 0	0 1	0 0	0 0	0 0	0 1	2	2	2		
	wL	50	20	0	0	0	0	0	0	0			-	-		
Ammoniumchlorid	wL wL	50 25	SP 20	3	0 1LS	0 0LS	1	0	0	0	0	3	3	3	0	2
(Salmiak)	wL wL	25 50	SP 20	3 3	2LS 1LS	1LS 0LS	1	1 0	1	1 0	1 0				0	3
	wL	50	SP	3	2LS	1LS	· ·	1	'	1	1				0	
Ammoniumfluorid Ammoniumfluorsilikat	wL wL	20 20	80 40	3	2LS 1	2LS 0					0	3	3	3		
Ammoniumformiat	wL	10	20	1	0	0		0	0	0	0					0
Ammoniumhydroxid	wL	10 100	70 20		0	0	0	3	0	0	0	3	3	3		1
Ammoniummolybdat		100	100												0	
Ammoniumnitrat	wL	100 100	20 SP	3 3	0	0			3 3		0	3	3 3	3 3		0
		10	25	3	0	0			3		0	3	3	3		
Ammoniumoxalat	wL	10 10	20 SP	1 3	0	0		1 1	1 1		0 0					
Ammoniumperchlorat	wL	10	20		0LS	0LS					1					
	wL wL	10 alle	SP <70		0LS 0LS	0LS 0LS					1 1					
Ammoniumpersulfat	wL	5 10	20 25	3 3	0 1	0 1	3	3	1	0	0	2 2	3	3		2
		10 20	30 20	3 3	1	1	3	3			0	2	3	3		
Ammoniumphosphat	wL	20 5	100 25	0	1	0	1	1	0		0	2	2	2		0
Ammoniumphosphat	WL	10	20	0	1	0					U	3	3	3		1
Ammoniumrhodanid		10 5	60 20	3	0	0	1	1	0	0	0					3
		5	70	3	0	0			0	0	0				_	0
Ammoniumsulfat	wL wL	1 5			0	0 0	1 1	1 1	1 1	0 0	0 0	2 2	2	2 2	0	2L 2L
	wL	10	20 SP		1	0	1	1	2	0	1	3	3 3	3 3	0	2L 3L
	wL wL	10 100	20	0	2	0	2	1 1	2	0	2 1	3	3	3	0	3L
A	wL	100	SP	1	0	0	_	1			2	_			0	
Ammoniumsulfit	wL wL	100 100	20 SP	2 3	0	0 0	3 3	3 3	3 2	2 2		3 3	3 3	3 3		
Amylacetat		100 100	20 SP	0 1	0	0 0	0	0 0	0 0	0 0	1	0	0	0		0
Amylalkohol		100	20	0	0	0	0	0	0	0	0	0	0	0	0	0
Amylchlorid	+	100 100	SP 20	1	0 0LS	0 0LS	1	1	1	0	0	0				2
Amylmercaptan	-	100 100	SP 20		1LS 0	0LS 0					0					0
Ananassaft		100	160 25		0	0	0	0	0	0	0					
Anilin		100	85 20		0	0	1	1 1	0	0		3	3	3		0
		100	180		1	1		2				Ľ				3
Anilinhydrochlorid	wL wL	5 20	20 100		3	3									0 0	
Anilinfarben Anilinsulfit	wL	10	20						1L			2	2	2		
		100	20								0					
Antimon Antimonchlorid	Schm tr	100	650 20	3 0	3	3	0				0					3
	wL		100	1			0	4	4			_	_	_	_	3
Apfelsäure	wL wL	<50	20 90	2	0	0	2	1	1	0	0	3	2	2	0	0
Apfelwein	wL	<50	100 20	3	0	0	2	1	1	0	0	3	2	2	0	0
Apieiweiii	ı	ı !	20		U	U	ı					I			l	1 1

Arsensaure No.																	
Arsensalure Scrim Arsensalure Asphafat Arsensalure Arsensalu	Medium		Konzentration %	Temperatur °C	Unlegierte Stähle	18/8-Stahl	18/8+Mo-Stahl	Nickel		Inconel 600 2.4816		ပ	Kupfer	Tombak	Bronze	Titan	Aluminium
Asphalating Against and Selmin 110 3 2 1 1 1 1 1 1 1 1 1				SP		0	0										
Asserbated 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Arsensäure						0										
Ammosphäre, Luft Land Land Substitute Land Substitute Luft		Schm															
Indust																	
Assperifiques s. Abpasse	Atmosphare, Luft																
Augudiffages c. Abchase Augudi						_											
Azobernorich	Ausnuffgase s Abgase	ivieei		30		ULS	03	U	U	U	- 0	- 0	U	- 1	U	U	
Bailumenthorid				20		0	0	0	0	0	0	0	0		0		0
Mul. 10 SP 11 Ol. 1 1 1 1 0 2 3 3	Bariumcarbonat				3	0	0									0	1
Barumnitydroxid	Bariumchlorid																
Barrumhydroxid Fest 100 20 0 0 0 1 1 0 0 1 1								1		1	1		2	3	3		
Mt. alic 20 0 0 1 1 1 0 0 1 1					_											0	
Mathematical Program	Bariumhydroxid				0												
No. Section							-	l '	'	1	U		l '	'			3
W.L. kg 20 0 0 0 0 1 1 1 1		"-				Ιĭ		1		1	0	•	ĺ				
Mathematical Health		wL			0	0	0			•	-	1		1			0
Seminomiate							-	-									-
Mile									1								
Schm 600	Bariumnitrat													2			
Mu			alle							1	0			2			0
Mathematified Mathematifie					0	_	-			4	4		_			-	_
Bariumsuffet						_	-									-	-
Bariumsulfide	Bariumeulfat	WL						1	1	<u> </u>		Λ			0		_
Baurwinsamenol											- 0	- 0		3		- 0	U
Benzoesaure	Baumwollsamenöl										0						
Benzoesäure	Benzin			20	0	0	0					0	0	0			
ML 10 20 1 0 0 0 0 0 0 0 1 1			100														
ML	Benzoesäure								_	_	_		١.				
Benzol, schwefelfrei										0	0		1		1		
Benzol, schwefelfrei					3	-		U	U					2		-	
100 SP 0 0 1 1 1 1 1 1 1 1	Renzol schwefelfrei	WL						0	0	0	n						
Benzolsulfonsaure	Derizor, scriwerenier					-							1	1	1	U	ľ
Benzolchiorid	Benzolsulfonsäure				3	3	3									3	
Fe				200		3	3					0					
Bernsteinsäure	Benzolchlorid																
SP		fe	100														
Bier	Bernsteinsäure																
100 SP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Rior	 	100			0	0	0	0	0	0	0	0	1	0	0	
Bierwürze	Diei					-	-	-				U	0	'	U	-	-
Blausaure	Bierwürze					Ů		Ť					3	1	3		
Bleiacetat	Blausäure				3	0	0		1	1	0	0		3		0	0
Bleiacetat	Blei		100					(2)	2								0
Bleiessig, basisch WL alle SP 0 0 0 1 1 2 0 2 3 2 3 3 3 3 3 3 3					(0)			(3)		0							
Bleiessig, basisch	Bleiacetat																0
ML Alle SP 0 0 0 1 1 2 0 2 3 2 3 2 3 3 2	Bloiossia hasiash							-1	1	2	0		2	2	2		2
Bleinitrat	DIGIESSIY, DASISCII			ZU SP									2				
Multiple	Bleinitrat		alle					<u> </u>	'		U			U			Ť
ML 50 20 0 0 0	····																0
Blut (rein) 36		wL															
Blut (rein) 36	Bleizucker																
Bonderlösung 98	Dist (sein)	1	alle					1	1	2	0		2			0	3
Borax WL		1				US		n					 				
Borax		+				1							1				
WL WL WL Schm ges SP 20 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		wL	1			0			0	0	0						
WL Schm Schm SP 3 0 0 0 0 0 0 0 1 1 1					1									0	0	0	0
Borsäure WL 1 20 0 0 0 1 1 0 0 0 0		wL						0									1
wL 4 20 0 0 0 1 1 0<																	
wL 5 20 1 0 0 0 1 1 0<	Borsäure																
wL 5 100 3 0 0 0 1 2 0 0 1 2 1 0 0 wL alle 20 0 0 0 0 0 0 0 0 wL alle <sp< td=""> 0 0 0 0 0 0 0 Bortrifluoräther 100 50 0 0 0 0 0 0 Branntwein 20 0 0 0 0 0 1</sp<>					4		-	-					ĺ				
wL ges vL wL alle vL alle vL alle vL alle vL wL alle vL vL vL vL vL wL vL wL wL wL vL wL													1	2	1		
wL alle vkL 20 lle vkL 0 lle					5								l '	_			ľ
wL alle SP 10 20 0 0 0 0 0 0 0 0						-				•	•						
10 20 0 0 1 1 0 0 Bortrifluoräther 100 50 0 0 0 0 0 1 Branntwein 20 0 0 0 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									0	0							
Branntwein 20 0 0 1 1			10			0	0	1	1	1	0					0	
	Bortrifluoräther		100									0					
	Branntwein	1															
				SP		U	U	<u> </u>					<u> </u>			<u> </u>	3

Brom Bromwasser Bromwasserstoffsäure Butadien Buttan Butter Buttermilch Buttersäure	tr tr tr fe fe	% Vouseutration % Vouseutration % Vouseutration 100 100 100 0.03 0.3 1	20 20 45 20 50 50	S S S C Stähle	18/8-Stahl	⊐ 18/8+Mo-Stahl	Nickel	Monel 400 2.4360	Inconel 600 2.4816	Incoloy 825 2.4858	Hastelloy C 2.4819	Kupfer	Tombak	nze	_	Aluminium
Bromwasserstoffsäure Butadien Butan Butter ButterButtermilch	tr tr fe	100 100 100 100 0.03 0.3	<65 <370 20 50	3L 3L	3L	3L		_		드	Ϋ́	Ϋ́	Ton	Bronze	Titan	Alun
Bromwasserstoffsäure Butadien Butan Butter Buttermilch	tr fe	100 100 100 0.03 0.3	<370 20 50	3L			0		0	1	0	0	0	0	2	3
Bromwasserstoffsäure Butadien Butan Butter Buttermilch	fe	100 100 0.03 0.3	20 50		3L	3L 3L			0	1	0 2					3
Bromwasserstoffsäure Butadien Butan Butter Buttermilch	fe	0.03 0.3		3L	3L	3L	0	0	3		3	2	3	1	0	3
Bromwasserstoffsäure Butadien Butan Butter Butter Buttermilch		0.3	20		3L 0L	3L 0L	0		3		3	—				
Buttan Butter Buttermilch			20 20 20		1L 3L	1L 3L										
Butter Buttermilch			20	3	3	3	3	3	2	3		2	3	2		3
Butter Buttermilch		100	30 20		0 0	0 0	0	0	0	0 0	0 0					0
Buttermilch		100	20	0	0	0	U	0				0	0	0		
Buttermilch		100	120 20		0	0	0	0	0	0	1 0	1	2	1	0	0
Buttersäure			20		0	0	U	0	0	0	0				0	0
		25	20	3	1		2	1	2	1	0	1				0
		25 50	60 20	3 3	1		2				0 0					0
		50	60	3			2				0					1
		ges ges	20 SP	3 3	0 2	0	2 2				0 0					0
Butylacetat		goo	20 SP	1		0		0	1		J	0	0			0
Butylalkohol		100	20	0	0	0	1	1	1	0	0	0	0	0	0	0
Cadmium	Schm	100 100	SP 350	<u>0</u>	2	2		2	2		0				0	0
Cadmidin	Schm	100	400	į.	2	2										
Calcium	Schm	100	800	3	3	3						_				
Calciumbisulfit	wL	ges ges	20 SP	3 3	0 2	0 0						0	3	1	0	
		20	20		0	0									0	
Calciumcarbonat		20	SP 20		1 0	0	0	0	0	0	0				0	┢──┤
Calciumchlorat		100	20	0	0LS	0LS	1	1	1	0	1	1				
	wL wL	10 10	20 100		0LS 2LS	0LS 1LS	1 1	1 1	1 1	0 0	1 1	1 1				
	wL	100	100		2LS	1LS	1	1	1	0	1	1				
Calciumchlorid		10 25	20 20	3 3	0S	OS OL	0	0	0	0 0	0 0	1	3 3	1 2	0	3
		25	SP	3	0L 0LS	0LS	U		0	0	0	'	3	2	0	3
		ges	20	3	0L	0L	1	1	0	0	0		3		0	3
Calciumhydroxid		ges <50	SP 20	0	1L	0L 1	1	2	1	0	0	1	3 0	0	1L 0	3
		<50	<sp< td=""><td>0</td><td></td><td>1</td><td>1</td><td>1</td><td>1</td><td>0</td><td>Ö</td><td>1</td><td>Ü</td><td>ŭ</td><td>0</td><td>3</td></sp<>	0		1	1	1	1	0	Ö	1	Ü	ŭ	0	3
		ges ges	20 SP	0 0		0	0	0	1 2	1 2					0	3
Calciumhypochlorit	wL	10	25	3	3LS	0LS		3			1	1	3	1	0	3
(Chlorkalk)		15 20	50 25	3 3	3LS 3LS	0LS 0LS					1 0	1	3	1	0	3
		20	50	3	3LS	0LS					1				0	3
		ges	<40	3	2LS	1LS		•			0				0	3
Calciumnitrat		20 50	100 100		0	0 0		0 0	0							
		Schm	148		0	0		0	0							
Calciumsulfat (Gips)	fe		20 SP	1	0	0	0	0	0	0	0 1					0
Calciumsulfit	wL	ges	20	0	0	0										1
Chininbisulfat	tr	ges	SP 20	3	3	0		1		0	0	0			0	1
Chininsulfat	tr		20	3	0	0		1		0	0	0			0	
Chlor	tr	100	20	0	0L	0L	0	0	0	0	0	0		0	3	0
	tr tr	100 100	100 <250	0 3	OL OL	OL OL	0	0 0	0	0	0	0 3			3	3
	tr	100	<400	3	2L	1L	0	0							3	3
	tr fe	100 99	500 20	3L 3L	3L 3L	2L 3L	1 0	1 2	1		0	3	3	2	3 0	3
	fe	99	100	3L	3LS	3LS					1	3	3	3	1	3
Chlorbenzol		100	20 SP	0	OL.	OL OL	0	0 0	0	0 0	0 0					
Chlordioxid	tr	100	70		0L	0L	U	U		U	0		3	3		$\vdash \vdash$
	wL	0.5	20	3							1		3	3	1	
Chloressigsäure	wL Mono-	50	65 20	3	3	3	1		1		2	2	3	3		3
S.I.S. Goolgoddi G	11101102	Konz	20	3	3	3	1		1			_	3	J		
I	1	<70	SP	3	l				2		1	ı		,	4	, ,

Medium		Konzentration %	Temperatur °C	Unlegierte Stähle	18/8-Stahl	18/8+Mo-Stahl	Nickel	Monel 400 2.4360	Inconel 600 2.4816	Incoloy 825 2.4858	Hastelloy C 2.4819	Kupfer	Tombak	Bronze	Titan	Aluminium
	Di- Tri-	100 >10	100 20 SP	3 3 3	0L	0L			0 3		0					
Chlorkalk	fe wL wL wL	1 5 5	20 20 20 100	3 3 3 3	1LS 2LS 1LS 3LS	1LS 2LS 0LS 3LS	0				'	1 3	3	1	0 0 1	3 3 3
Chloroform	fe fe	99 99	20 SP	3	0LS 0LS	OLS OLS	0	0	0	0	0	0			0	3
Chlorsulfonsäure	tr fe wL	100 99 10	20 20 20	3 3	1LS 2LS 3	OLS OLS 3	0 3 3	0	0 1 0	0 1 0	0	'			3 3 3	0 3 3
Chlorwasser		ges ges	20 90	3	1LS 2LS	1LS 2LS					0				0	3
Chromalaun	wL wL wL	ges ges 10	20 SP 2	3 3 3	1 3	0 3	1 2	0	0				3 3 3			1
Chromsäure	wL	5 5 10 10 50 50	20 90 20 SP 20 SP	3 3 3 3 3	0 3 0 3 3	0 3 0 3 3	3 3 2 3 2 3	3 3 2 3 2 3	3 2 3 2 3	1 1 1 1 1	0 1 0 0	3 3 3 3 3	3 3 3 3 3	3 3 3 3 3	0 0 0 0	1 1 3 2 3
Chromsulfat		ges	20 90	2 3	0	0 2	0	0	0	0	0					
Dichloräthan		100 100	<50 SP	3	2L	1L					1			0 0		
Dichloräthylen (Acetylenchlorid)		100 100	20 SP	0	OL OL	OL OL	2					0 0			0 1	
Dieselöl, S <1%		100 100	20 100	0	0	0	0 2	0	0	0	0	0	1	0 1	0	0
Diphenyl		100 100	20 400	0	0S 0S	0S 0S	0	0	0	0	0	0	0	0	0	0
Edelgase	tr fe		20 20	0	0 0	0 0	0	0	0	0	0	0	0 0	0 0	0	0
Eisen-II-Chlorid	tr wL	100 10	20 20	0 3	3	3	3	3	3	2	0 1	1	3	1	0	3
Eisen-III-Chlorid	tr wL wL wL	100 10 50 50	20 SP 20 <sp< td=""><td>0 3 3 3</td><td>0L 3L 3L 3L</td><td>0L 3L 3L 3L</td><td>2</td><td>2</td><td>2 2 3</td><td>1 2</td><td>0 1</td><td>3</td><td>3</td><td>3</td><td>0 0 0</td><td>3</td></sp<>	0 3 3 3	0L 3L 3L 3L	0L 3L 3L 3L	2	2	2 2 3	1 2	0 1	3	3	3	0 0 0	3
Eisengallustinte	WL	50	20	0	0L	0L		1	3						U	
Eisen-III-Nitrat	wL wL wL	10 alle alle	20 20 SP	3 3 3	0 0 0	0 0 0					0					
Eisenphosphat (Bonder) Eisen-II-Sulfat	wL	alle	98 20	0	0	0		1			1	1	3	1		1
Eisen-III-Sulfat	wL wL	<30 <30 <30	SP 20 <65 80	3 3 3	0 0 0 1	0 0 0 0	3	1			0 0	3	3	3		3 3
Entwickler (Fotogr.)		<30	SP 20	3	1 0L	0 OL										
Erdgas Erdöl (roh) S 0,3%		100 100 100	20 20 100	1	0 0 0	0 0 0	0	0 0 0	0	0	0	0	0	0		0
Essig		100	400 20	3	0	0		3				1	3	1		0
Essigsäure		10	SP 20	3	0	0	2	1	1	0	0	3 1	3	<u>3</u> 1	0	0
		10 20 20 50 50 80 80 99	SP 20 SP 20 SP 20 SP 20 SP	3 3 3 3 3 3 3 3 3 3	2 0 0 3 0L 3L 0L 1L	0 0 0 0 0 0L 0L 0L 1L	2 2 2 2 2	1 1 1 1 1 1 1 1	1 1 1 1 1 2 2	0 0 0 0 0 0 1 0	0 0 0 0 0 0 0	3		0	0 0 0 1 0 0 0	2 0 2 0 2 0 2 0
Essigsäureanhydrid		alle 100 100 100	20 60 100 SP	1 3 3 3	0 0 0	0 0 0	0 0 0 1	1	1	0	0	0 1 2	3	0 1 2	0 0 0	0 1
Exkremente Farbflotte			20	1	0L	0L		0					1	0		1

Heizöl																	
organisch oder sauer 20 0 0 0 0 0 0 0 0 0	Medium		Konzentration %	Temperatur °C	Unlegierte Stähle	18/8-Stahl	18/8+Mo-Stahl	Nickel		Inconel 600 2.4816	Incoloy 825 2.4858	ပ	Kupfer	Tombak	Bronze	Titan	Aluminium
organich cloder sauser schwacht schwefolsauer schwacht schwefolsauer schwacht schwefolsauer 20 2 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	alkalisch oder neutral			20		0	0		0								0
schwach schwefelsauer SP SP O O O O O O O O O						-											-
stark schwerlesauer SP 3	organisch oder sauer																
Staffs schwofelsature	schwach schwefelsauer				•	0				0							
Fetsauren, nöhere tech. 100	stark schwefelsauer					1				0							
			400									_		_			
Flaceh	Fettsauren, hohere tech.		100 100	150 235	3 3	0 2	0 0	0	1 1	0 0	0 0	0 0	0 3	3	3	0 0	3
Fluor	Fleisch		100		3		_	0	11	0	0	0	3	3	3	0	3
Fluorwasserstoff		tr tr	100 100	20 200 500	0 3	0 1LS	0 1LS	0 0	0		0	0 0	3			0	3
Fluorinesserstoffsture (Fluorinesserstoffsture (Fluori	Fluorwasserstoff							-						2	2	3	
Formalehyd (Formalin)			alle 10	20 20	3 3	3L	3L	1 1	1 1	1 1	1 1	1 0	3 2	3	3	3	3
Free			10	20				1	0	1	1		0	2	0	0	1
Fruchistaure	Faran Frinan		40	SP		0	0					1				0	1
Fundisature	Freon, Frigen		100			-											
Fruchtsaure	Fruchtsäfte				1								1	3	1		0
Furfurol SP 2	Fruchtsäure			20	1	0	0						1	3	1		0
Gallusaure V.L 1 20 2 0 0 0 0 0 0 0	Furfurol		100	25					0				2	2	0		
WL Color				<400												0	
Gelatine	Gallussäure		<50 100	100 20	2				0	2						0	-
Gerblösung	Gelatine	wL		80						0			0	1	0	0	
SP 3 0 0 0 0 0 0 0 0 0	Gemüsebrühe		SP			_	0										
Gerbsäure (Tannin)	Gerblösung	wL															0
10	Gerbsäure (Tannin)	wL	5	20	2								0	1	0	0	0
Glas			10 10 50	20 SP 20	2 3 3	0 0 0	0 0 0	1			0	0				0	0
Columnisative	Glas	Schm			_												
Signature Sign	Glucose	25.1111	.00	20									0	1	0		
100 SP 1 0 0 0 0 0 0 0 0 0				80	3					1	1	1					
Gummi, roh	-			SP	1	0	0						1	0	0		0
Harn								0	0	0	0	0				0	_
Harnsäure				20	1	0L	0L	0		U	U	U	U	U	U	U	
Harze, natürliche	Harnsäure			20		0	0										
Hexamethylentetramin	Harze, natürliche	vV∟	100 100	20 300	3	0 0L	0 0L		0				0 1		1		
ML 80 60 2		wi			1			2	0	0	0		0	0	0	0	0
Hydrazinsulfat WL 10 SP 3 2 2 Hydrochinon 20 1 1 0 0 Hydroxylaminsulfat WL 10 20 0 0 NSP 0 0 0 0 0 Insulin 100 <40				60	2			2	2	2	2	-					1
Hydrochinon 20 1 1 0 0 Hydroxylaminsulfat WL wL 10 20 SP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<	Hydrazinsulfat	wL	10														
WL SP 0 0 Insulin 100 <40	Hydrochinon			20		^	0	1	1	0	0						0
				SP													
	Insulin Isopropylnitrat		100	<40 20					0	0	0	0		0			

		1														
Medium		Konzentration %	Temperatur °C	Unlegierte Stähle	18/8-Stahl	18/8+Mo-Stahl	Nickel	Monel 400 2.4360	Inconel 600 2.4816	Incoloy 825 2.4858	Hastelloy C 2.4819	Kupfer	Tombak	Bronze	Titan	Aluminium
Jod	tr tr	100 100 100	20 300 20	0 1 3	OL OL	OL OL 2L	3 3	0	0	0	0	3	3	3	3 2	0 3 3
Jod, alkohol. 7%	fe	100	20	3	3L 1L	0L	3	<u>ა</u>			l	3	3	3		_ <u> </u>
Jodoform, Dampf	tr fe		60 20	0 3	0 0L	0 0L	3					3	3	3		0
Jodtinktur			20		2L	0L										3
Jodwasserstoffsäure Käse	wL		20 20		3 0	3 0							3			3
Kaffee	wL		20	0	0	0	0	0	0	0	0	0	0	0	0	0
			SP	2	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö
Kakao			SP	2	0	0	0	0	0	0	0	0	0	0	0	0
Kalium	Schm	100	100 600 800	0	0 (0) (0)	0				0 0 0						0 0 0
Kaliumacetat	Schm wL	100	292 20	1 (1)	0	0	0	0	0	0	0	3		1		U
Kaliumbichromat	wL	25 25	40 SP	3 3	0	0 0	1	1	1	1	1	3	3 3	3		0 (0)
Kaliumbifluorid	wL	ges	20		0L	0L										
Kaliumbisulfat	wL	5 5	90 20	3 3	2	0 3									0 3	
Kaliumbitartrat	wL	kg	20	3	0	0	0								J	0
(Weinstein)	wL	hg		3	3	1	1									1
Kaliumbromid	wL	5 5	20 30	3 3	OL OL	OL OL	0 0	0 0	1	1	0	0	0 0	0 0		1 2
Kaliumcarbonat (Pottasche)	Schm wL wL	100 50 50	1000 20 SP	3 2 3	3LS 0 3	3LS 0 3	0	0 0 0	0	0 0	0 1	1	3 3	1	0	3
Kaliumchlorat	wL	5 ges	20 SP	(2)	OL OL	0	1 3	1 3	1 3	0	0	(1) 1	(1)	(1)	0	0
Kaliumchlorid	wL	5 30	85 20	(2) (1)	OL OL	OL OL	1 0	1 0	2	0	1	1 2	2	1	0	3
		30	SP	2	1L	0L		0	0	0	1	(2)	(2)	(1)	0	3
Kaliumchromat	wL	10 10 <30	20 SP 30	0 (1)	0 0 0	0 0 0	0 0 0	1	0	0	0	0	0			0
Kaliumchromsulfat	wL	ges ges	20 SP	3	1 3	0 3	1 2	0 (1)	0	0			3			3
Kaliumcyanat	Schm wL	100 10	750 20	3 (0)	0	0		3 (1)				3	3	(0)		1
Kaliumcyanid	wL	10	SP	3	0	0		. ,				3	3	3		3
Kaliumhydroxid	wL Schm	20 20 50 50 hg 100	20 SP 20 SP 360	0 0S 0S 0S 0S 3	0 0S 0S 3 0S 3	0 0S 0S 3 0S 3	0 0 0 0	0 0 0 0	1 1 3	0 1 1 1	0 1 0 1 1 3	3	2	1	0 0 3 3	3 3 3 3 3
Kaliumhypochlorit	wL	alle	20 SP	3	2L 3L	OL 3L	3	3	3	3	0				0	3
Kaliumjodid	wL	ue	20 SP	(0) (0)	OL OL	OL OL	3	3	1	0	0				·	3
Kaliumnitrat (Kalisalpeter)	wL	25 25 ges ges	20 SP 20 SP	0 0 2	0 0 0 0	0 0 0	1	1 1 1	1 1 1	0 0	1 1 1	0	0 (0)	0		(0)
Kaliumnitrit		ges	SP	1	0	0	1	0	0	1	0	1	1	1		t
Kaliumoxalat		alle	20 SP		0	0	0		0	0	0					
Kaliumperchlorat	wL	25 75	20 50								1					
Kaliumpermanganat	wL	10 alle	20 SP	0 3	0 1	0 1	0 0	(1) 1	1	0	0 1	0			0	0
Kaliumpersulfat	wL	10	25	(3)	0	0	(3)	(3)	0	0	0	(3)	(3)			(3)
Kaliumsulfat		10 10	20 SP		0	0		(1)	^		1	0	1	0 0	0	(1)
Kalkmilch		20	20 SP	0 (0)	0	0 0	0	0 0	0	0	0	0				0
Kampfer Karbolsäure	rein	100	(0) SP	3	0 1	0	0	0	0	<u>0</u> 1	<u>0</u> 1				0	3
(Phenol)	wL roh	90 90 90 50	SP 20 SP 20	3 (1) 3 (1)	1 0 1	0 0 0	0 0 (1)	(0) 0 (0) 0		0	1 0 1 0	1	1	1	0	3 0
		50	70	3	1		(1)	0			1					1

Section																	
Margin M	Medium		Konzentration %		Unlegierte Stähle	18/8-Stahl	18/8+Mo-Stahl	Nickel		Inconel 600 2.4816		ပ	Kupfer	Tombak	Bronze	Titan	Aluminium
Memoranamentamentamentamentamentamentamentame	Karnallit	wL							•								
Generalizariowasser- office and fluorina service of the service of	Korosin							0	0	0			(0)	(0)	(0)		
Information								U	0	0	0		(0)		(0)		3
Conjugacision	stoffsäure		100	20	3	1L	2L					1	1		1	0	3
Variety Vari	Königswasser							3	3	3	3		3	3	3		
tr 100 700 3	Kohlendioxid	tr												J			_
tr salle 700 1000 1000 1000 1000 1000 1000 1000						0	0	0	0		0	0	3	0			
It										1							
Fig. 15					3												
Fe 100 25 22 0 0 1 1 1 0 0 0 0 0			15	25		0	0	1	1	1	0	0				0	
Cohemonasid 100 bar 100 20 0 0 0 0 0 0 0 0							-	4	4	4	0			2	1	_	
100 540 3 00 0 0 0 0 1 1 1 1	Kohlenmonoxid 100 bar	ie											U			U	_
Kreosot 100 20 0 0 0 0 1 0			100	540	3	(0)	Ĭ	-									
kupfer-li-Cyanid WL 100 SP 0 0 0 11 (1) 1 3 4 4 2 2 3 3 3 3 3 4 4 2 2 2 2 3 3 3 3	Kohlenwasserstoff, rein				0												
Kupferacetat WL 2D (3) 0 0 0 0 (1) (1) (1) (1) (1) (1) (1) (1) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	NIEOSOI			SP		-	-						U	1	U		
Kupfer-II-Chlorid WL. wl. vl. vl. vl. vl. vl. vl. vl. vl. vl. v	Kupferacetat	wL		20		0	0	(1)	(1)	(1)							
Wt. 10 20	Kunforommanium ak !: -!	L. I	4		(3)	0	0		4						3		3
Wupfer-II-Chlorid	Kupterammoniumchiorid																
W.L. 1 S.P 3 31, S.				20													
Wild State	Kupfer-II-Chlorid			20							0	1					
WL 40 SP 3 3 3 3 3 3 3 3 3								3				1	2	3	2		3
Wilder-II-Cyanid Wilder-II-C							120						-	Ü	-		
Kupfer-II-Cyanid WL WL WL ML 10 10 50 50 50 50 50 50 50 50 50 50 50 50 50										3	3					0	
WL 10 SF 0 0 0 3 3 3 1 3 3 5 5 0 0 3 3 3 1 3 5 5 5 0 0 3 3 3 1 3 5 5 0 0 3 3 3 3 1 3 5 0 5 0 5 5 5 5 5 5	Kunfor II Cyonid		_		3			3				0					
Kupfer-II-Nitrat 50 20 0 0 3 3 3 0 1 (2) (3) (2) 0 3 3 3 1 (2) (3) (2) 0 0 3 3 3 1 1 (2) (3) (2) 0 0 3 3 3 0 1 3 0 0 3 3 3 0 1 3 0 0 3 3 3 0	Kupiei-ii-Cyaniu					-	-										
Solution		wL	_		3												
Ges 20	Kupfer-II-Nitrat					_		3			0		(2)	(3)	(2)		3
Augher-H-Sulfat Sulfate Sulfat						-	-	3			0		3			-	3
Lacke (auch Firmis) Leim, neutral sauer 20 (0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Kupfer-II-Sulfat					-	-							(3)	(1)		
Composition			alle							3	0	0			•		_
Leim, neutral sauer	Lacke (auch Films)				(1)	U	U	U					U	U	U	U	
SP	Leim, neutral			20	(0)			0	0				0	1	0	0	Ů,
Leinol	sauer				(1)	_	-		0								(2)
Leuchtgas	l einöl				0		U	0	0	0	0	0	0	1	1	0	0
Lithium	Leuchtgas			20	(1)	0	0		0	0	0			•	·		
Sep		O - h	400				0		0								
SP		Schin	100		(0)												
Schm				SP		0	0			0	0	0					
Magnesium	Lysol				(2)				0								
Magnesiumcarbonat 10 SP (0) 0 0 0 0 0 0 0 1 0 1 0 1 1	Magnesium	Schm	3		(3)			3	3				3	3	3		
Magnesiumchlorid tr 100 20 0 0L 0L 0L 0L 0 0 0	Magnesiumcarbonat			SP								1					
WL 5 20 3 0LS 0LS 0 0 0 0 2 0 0 3 3 3 3 2 5 2 5 5 5 5 5 5 5	Magnasiumoblarid	+r	_									0					
WL 50 SP 3 2LS 2LS 0 0 0 0 2 0 3 3 3 3 3 3 3 3 3	Magnesiumonio									0	0		2			-	
Magnesiumhydroxid 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																	
Magnesiumhydroxid 20 0																-	
S 20 2 0 0 1 1 1 0 0 0 3 0 0 0 0 0 0	Magnesiumhydroxid	WL	30					0	0				0	(0)	0		J
10 SP 3 0 0 1 1 1 0 0 0 0 0	Magnesiumsulfat																
25 SP 3 0 0 1 1 0 0 0 0 0 0								1	1	1	0		0	3	0		
Manganchlorid 5 100 3 0LS 0LS 1 1 1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			25	SP	3	_					1					ľ	ľ
10 SP 3 OLS OLS 1 1 1 0 3 3 0 0 0 0 0 0 0												1					
50 20 3 0LS 0LS 0 3 0 0	Manganchlorid																0
50 SP 3 OLS OLS O 3 O				20				'	'		U						
50 (1) 1LS 0LS 0 0 0 0 0 (0) (1) 0 0 (0)					3	0LS							3				
SP (2) 2LS 1 0 0 0 0 (1) (1) (0) 0 (1) Methylacetat 60 SP (0) 0 0 0 (1) (1) (0) 0 (1)	Meerwasser							-									
Methylacetat 60 SP (0) 0																	(1)
Methylaikohoi <100 20 (1) 0 0 0 0 0 0 0 0 0	Methylacetat																
	Methylalkohol	I I	<100	20	(1)	0	0	0	0	0	0	0	0	0	0	0	0

Saluer																	
Methyshkorid Ir 100 20 0 0 0 0 0 0 0 0	Medium		Konzentration %		Unlegierte Stähle	18/8-Stahl	18/8+Mo-Stahl	Nickel		Inconel 600 2.4816		ပ	Kupfer	Tombak	Bronze	Titan	Aluminium
Miche Infisch 20 20 0.05 0.05 0.05 0.00																	
Milchabure 70 70 70 70 70 70 70 7	Methylchlorid		100					0	0				0	0	0	-	
Sale	Milch												(0)	(2)	0		_
Michelaure W.L. 1 20 1 0 0 0							_	2	2	0	0	0					(0)
Micheaure WL 1 520 1 0 0 0 1 1 2 1 0 0 0 0 1 1 0 0 0 0 0							-										
10	Milchsäure			20									0	2	1		
10 SP 3 2 3 3 2 1 0 0 0 0 0 0 0 0 0								(1)	0	0			1	2	1	-	
Solution			10	SP		3	2	3		(2)				-	•	0	3
Bo 20						-		1								-	
B0 SP										(1)		(0)					
Mohbdansaure			80	SP		2										-	3
Manochoressigalure	Molyhdängäuro	sul.				2	1					1				0	3
Natriumbromid ML alle 20 3 3 3 3 (1) (2) 3 3 3 3 3 3 3 3 3					3	3	3	(1)	2	(1)	3		3				3
Natriumchorid 100	-							(1)					3	3	3	3	_
100 200 0 0 0 0 0 0 0 0								0	0	0	0	0					_
Natriumclariant	radiani		100	200	0	0	0										(1)
Natriumaluminat	Natriumaaatat	and .						_		0						_	0
Natriumbisulfit	Nathumacetat	WL					-	U	U	U	U						U
Natriumbisufit 10		wL															
Natriumbisuffit 10 20 3 0 0 0 1 3 1 0 0 3 3 0 0 0 0 1 3 1 0 0 3 3 0 0 0 0 0 1 3 1 0 0 3 3 0 0 0 0 0 0	Natriumbicabonat							1	1	1	0		1	2	1	0	0
10 SP 3 2 0 0 0 0 1 3 1 00 0 1 3 1 00 0 1 3 1 00 0 1 3 1 00 0 1 3 1 00 0 1 3 3 1 00 0 3 3 3 3 3 3 3					(·)		Ů										
Sol	Natriumbisulfit						-	0				1	3	1			(0)
Natriumbromid							-	0		0		1	3	1	(0)		3
All				SP	3	0	0	Ů				•	Ů	•	(0)		
Natriumcarbonat Matriumcarbonat Matriumcarb	Natriumbromid	wL															
Natriumchlorat	Natriumcarbonat	wL			-												Ŭ
Natriumchlorat					1L			0	0			0	1	2	1	0	
Natriumchlorat					3												
Natriumchlorid WL 30 SP 3 OLS		Schm			3				(0)								
Natriumchlorid WL 3 20 (1) 0LS 0LS 1 0 1 1 0 1 0 (0) 3 SP (2) 0LS 0LS 1 0 1 1 1 1 1 0 0 1 2 1 0 1 1 0 1 0 1 1 0 0 1 0 1	Natriumchlorat																
10	Natriumchlorid	wL			(1)			1	0	1		0					3
10					(2)									•		(0)	
Ref													1	2	1	-	'
Natriumcyanid			kg	20	(2)	0LS	0LS					0				-	
Natriumcyanid	Natriumcitrat	na/l			(2)				0		0		0				
Natriumdichromat WL ges 20 3 0 0 3 3 3 3 0 3					(1)		0	<u> </u>	3	'				3	3	0	
Natriumfluorid 10 20 (0) 0LS 0LS 0LS 0 0 0 0 0 0 0 0 0	NI-tai distance at				3				3								3
Natriumhydroxid Fest 100 320 33 33 30 1 1 0 0 0 0 0 0 0		WL			(0)	0LS				0	0	0	3		3	U	
Natriumhydroxid fest 100 320 (3) 3 3 3 0 1 0 0 0 0 0 1 (0) 0 3 3 3 3 0 1 0 0 0 0 0 0 0 0					(0)									. ,			
WL 5 20 0 0 0 0 0 0 0 0	Natriumhydroxid	fest			(3)			0	1	0	0	0				0	3
Natriumhypochlorit (Javelwasser)	Hadianinyaroxia		5	20						0						0	3
Natriumhyposulfit					0	06	06	-					1	2	1		
Solution					U			-								-	
Natriumhypochlorit (Javelwasser)			50			1S	1S									-	3
Color Colo	Natriumhypochlorit							0	0				2	3	1		
Schm 100 320 3 0 0 0 1 1 1 0 1 2 0 0	(Javelwasser)		10	50	(3)	1L	0LS			(0)	1	1			<u>'</u>	0	
Natriumnitrat	Natriumhyposulfit																
WL 5 20 (2) 0 0 1 1 0 <td>Natriumnitrat</td> <td>Schm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u>'</u></td> <td>U</td> <td></td> <td></td> <td></td> <td></td> <td>U</td> <td>0</td>	Natriumnitrat	Schm								<u>'</u>	U					U	0
wL 30 km 20 km 1 km 0 km <th< td=""><td></td><td>wL</td><td>5</td><td>20</td><td>(2)</td><td>0</td><td>0</td><td>1</td><td></td><td></td><td></td><td>0</td><td></td><td>_</td><td></td><td></td><td>0</td></th<>		wL	5	20	(2)	0	0	1				0		_			0
WL 30 SP (1) 0 0 1 1 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>2</td> <td>1</td> <td>U</td> <td>-</td>						-	_						1	2	1	U	-
Natriumperborat WL ges 20 (1) 0 0 1 1 Natriumperchlorat WL 10 20 (2) 0LS 0 0 0		wL	30	SP		0	0	1	1	0		•					0
Natriumperchlorat WL 10 20 (2) 0LS 0LS 0	Natriumnitrid				/41			2	2	2	1	1	0				0
																1	
	,								_	_	_			_	_		

Medium		Konzentration %	Temperatur °C	Unlegierte Stähle	18/8-Stahl	18/8+Mo-Stahl	Nickel	Monel 400 2.4360	Inconel 600 2.4816	Incoloy 825 2.4858	Hastelloy C 2.4819	Kupfer	Tombak	Bronze	Titan	Aluminium
Natriumperoxid	wL	10 10	20 SP	3	0	0	0	0	1	1	1	3			3	3
Natriumphosphat	wL wL	10 10 10 10	20 50 SP	3	0 0 0	0 0 0	0 (0)	0	1	1	1	3 1 3	2	1	0	(0) (0) (1)
Natriumsalicylat (Aspirin)	wL	ges	20		0	0										` '
Natriumsilikat		ges	20		0	0	0	0	0	0	0	0	1	0	0	(2)
Natriumsulfat	wL	10 10 30 30 kg hg	20 SP 20 SP	3 3 3 3 3	0 0 0 0 0	0 0 0 0 0	0	0 1 0	0 1 0	0 0 0	0 1 0 1 0	0	0	0	0 0 0	0 0 1
Natriumsulfid	wL wL	20 20 50 kg	20 SP SP 20	3 3 3 3 3	0 0 0 (0) 3	0 0 0 (0) 1	1	3	0 (0) (0) 1	0	1	3	1	2	0 0 0 0	3 3 3
Natriumsulfit	wL	hg 10 50 50	20 20 SP	(3) (3)	0 0 0	0 0 0		0				(1)	(3)	(1)	U	0
Natriumthiosulfat		1 25 25 100	20 20 SP 20	1 3 3 3	0 0 0L 0	0 0 0L 0	0 0 0 1	0 0 1				2				0 0 1
Natriumtriphosphat	wL	10 10 25	20 SP 50								1 1 1					
Nickelchlorid		10 10 80	20 <60 <95	3 3	1LS 1LS	1LS 1LS	1	1	1 0	0	0 0 0	3	3	1	1	
Nickelnitrat	wL	<10 10 <100	20 25 30	3 3 3	0 0 0	0 0 0	3 3 3	3 3 3	0 0 3	0 0 0	0 1 1	3 3 3			0 0 0	3 3 3
Nickelsulfat	wL	<60 10	20 SP 25	3 3 3	0 0 0	0 0 0	3 3 2	(1) (1) 2	(1) 0 2	0	0	0	2	1	- 0	3
Nitrobenzol		100	100				1	1	1	1	1					0
Nitrose Gase	tr fe	alle	540 20				3				0 0	3 0	3 3			
Nitrose Säure		5 5	20 75		0	0 1										
Novocain			20		0	0						(2)				
Obst, Obstsaft			20 SP	(1) (2)	0	0 0	0 (0)	0 (0)	0	0	0	(0) 1	3	1		0
Öle			20 SP	0 (0)	0	0	(0)	(0)				0 (0)		0 (0)		0 (1)
Ölsäure, technisch			20 150 180 235	(1) (2) 3 3	0 0 1 2	0 0 0 0		0 0 1	0 0 0 (0)		0 (0) (0) (0)	0 (2) 3 3	1 1 (1)	(0) 1 3 3		0
Oxalsäure	wL	2 5 5 10 10 30 30 50 50	20 80 20 80 20 SP 20 SP 20 SP	3 3 3 3 3 3 3 3 3	0 0 0 1 1 3 3 3 3	0 0 0 0 0 2 3 3 3	2 2 2 2 2 2 2	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1 1 1 0 1 1 1	0 0 0 0 0 0 0 1	(0)	2	1	0 3 0 3 2 3 3	0 1 1 2 3 (3)
Palmitinsäure	6 :	100	20	(2)	0	0	0	0	0	0	0	1	2	1	0	0
Paraffin Perchloraethylen	Schm wL	100	120 20	(0) 0	0 OL	0 0L	0	0	0	0	0	0	<u>0</u> 1	<u>0</u> 1	0	3
Petroleum (Kerosin)	VV.	100	SP 20 100	(3) 0 0	0L 0L 0	0L 0L 0	0	0 0 0	0 0 0	0 0 0	0 0 0	(0) 0	(0) 1 (1	(0)	0 0	3
Petroläther		100	20	U	0	0	(2)	U	U	U	U	(0)	(1	(0)	U	
Phenolsulfonsäure		100 30 30	SP 20 120	(0)	0	0				0	0					
Phosphor Phosphorpentachlorid	tr	100	20 20	0	0	0	(0)	(0)							1	0
Phosphorsäure	wL	100	60	3	0	0	(0)	(0) (0)	0	0	0	2	3	3	1 0	3
т поэрпогэаше	I WL	. ''	20	J	ı	ı	ı	ı	U	U	U	. 4	J	J	U	J

(chom.roin) 10 20 3 0 0 0 2 1 1 0 0 2 3 3 0 0 3 1 1 0 0 2 3 3 3 0 0 3 3 0 0 0																	
	Medium		Konzentration %	Temperatur °C	Unlegierte Stähle	18/8-Stahl	18/8+Mo-Stahl	Nickel		Inconel 600 2.4816	Incoloy 825 2.4858		Kupfer	Tombak	Bronze	Titan	Aluminium
Principle Prin	(chem. rein)						-										3
Solution			10 30	80 20	3 3	0 0	0 0	0	1	1	0	0 0	1	1	1	1 0	3
Circle Chrisischer C 20 SP 3 0 0 0 0 0 0 1 1 3 1 3 1 1 1 3 1 1			50 50 80	SP SP	3 3 3	2	1	0 (2)	0	3		0 1 2		(0)		1 3	1
Phatasarranhydrid			<30 50 50 85	SP 25 SP 25	3 3 3 3	0 0 3 0	0 0 2 0					1 0 2 0				3 1 3 3	
Pikrinsaure	Phtalsäureanhydrid		85	20	(0)							0	(0)	(0)	(0)		0
Propose	Pikrinsäure		3	150 20	3 3	-	-						3	3	3		3
Pyrogalion									3								
100			100	20	(0)	0	0	0	0	0	0	0	0	0	(0)	0	0
Quecksilberchiorid	Quecksilber		100	20 50	(0)	0	0	0	3	0	0	0	3	3			(1) 3
Quecksilbercyanid WL 20 (3) 0 0 0 3 3 (3) 3 2 0 3 3 3 3 3 8 7 8 7 100 100 100 100 100 100 100 100 100 1	Quecksilberchlorid		0.1 0.1 0.7	20 SP SP	3	1S	0S	0	3		0	0 0 0					3 3 3
Quecksibernitrat	Quecksilbercyanid	wl	10		(3)	0	0	3	(3)	3	2		3	3	3		3
Ribbenzuckersirup	Quecksilbernitrat			20	(3)				(3)				3	3	3		3
Salicylsaure It 100 20 1 0 0 0 0 0 0 0 0	Rizinusöl																0
ML				20	(1)										0		
Salpetersaure 1 20 3 0 0 0 0 0 0 0 0	Salicylsäure		1	80	(3)	0	0	0	0				(1)		(1)		0 0 1
Salzsäure 0.2 20 3 1LS 1LS 1LS 0 0 0 0 0 0 0 0 0			1 10 10 10 15 15 25 25 25 40 40 50 65 65 90 99 99	20 SP 20 65 SP 20 65 SP 20 65 SP 20 SP 20 SP 20 SP 20 SP 20 SP 20 SP 20 SP 20 55 55 SP 20 55 SP 20 55 SP 20 55 SP 20 55 SP 20 55 SP 20 55 SP 20 5 55 SP 20 55 SP 20 55 SP 20 55 SP 20 55 SP 20 55 SP 20 55 SP 20 55 SP 20 5 SP 20 5 SP 20 55 SP 20 55 SP 20 55 SP 20 55 SP 20 5 SP 20 5 SP 20 5 SP 20 55 SP 20 55 SP 20 55 SP 20 55 SP 20 55 SP 20 55 SP 20 5 SP 20 5 SP 20 5 SP 20 55 SP 20 55 SP 20 55 SP 20 55 SP 20 5 SP 20 5 SP 20 5 SP 20 5 SP 20 5 SP 20 5 SP 20 5 SP 20 5 SP 20 5 SP 20 5 SP 20 5 SP 20 5 SP 20 5 SP 20 5 SP 20 SP 20 SP 20 SP 20 Sp 2 Sp 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 3	2 1 2	2	1	0 1 (1) 3 0 0 3 0 1 3 0 1 3 0 1 3 0 3 3	3 3 3	3 3 3	3 3 3	0 0 0 0 0 0 0 0 0 0 0 0 0	2
			5	25	3	0	0	(1)		1	0	0	2				2
Sauerstoff	CaiZSault		0.2 1 1	50 50 100	3 3 3	2LS 3 3	3LS 3 3					0 0 3				0 0 (1)	
Schmierseife 20 <			100 100	-185 20 500	(0) 0	0 0 0	0 0 0		0				0		0		
Schokolade 20 0 0 0 0 0 0 0 0 (0) (0) (0) 0 0 0 120 0 0 0 0 0 0 0 0 0 0 0 0 0		+						 									
		1		20		0	0					-				-	0
Septimore 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Schwefel	tr	100	120 20	0	0	0	0	0	0	0	0	(0)	(0)	(0)	0	0

Medium		Konzentration %	Temperatur °C	Unlegierte Stähle	18/8-Stahl	18/8+Mo-Stahl	Nickel	Monel 400 2.4360	Inconel 600 2.4816	Incoloy 825 2.4858	Hastelloy C 2.4819	Kupfer	Tombak	Bronze	Titan	Aluminium
	Schm Schm	100 100	130 445	(1)	0 2	0 2	3	3	(0)	0	0	3	3	3	0 (0)	
Schwefelchlorür	fe tr tr	100 100	30 SP	0	0LS 0LS	0 0LS 0LS	0 0	0				(0)	(0)	(0)	0	3
Schwefeldioxid	tr tr	100 100 100	20 400	0	0 2	0 0	0	1				0	0	0	0	0
	tr fe	100	800 20	3 2	3 0	2	3					1	3	1	0	1
Schwefelkohlenstoff		100 100	400 20 SP	3 1 2	0 0	0 0	(0) (0)	(0) (0)				1	0	1	1	0 0 0
Schwefelsäure H ₂ S0 ₄		1 1	20 70	3 3	1 1	0	0	1	1 2	0	0	1			0 (0)	1
		1 10	SP 20	3	1 2	1	1	1			1	2	1		3	1
		10 10	20 70	3 3	2	1 2	1 2	1 2			0	2	1		(3)	1
		40 80 96	20 20 20	3 3 1	1 3 0	1 3 0	1	1 1 2		0	0 0 0	(1)	3 3	2 1	1 3 3	2
Schweflige Säure S0 ₂	fe	96	SP 200	3	3	3	3	3	3	0 3 0	3	1 3 3	3	3	3	2 3 2
(Gas)	fe fe fe		300 500 900	3 3 3	2 2 3	0 0 2		Ü	Ü	Ü	Ü		Ü	Ü		_
Schweflige Säure H ₂ SO ₃	wL wL	1 5	20 20	3 3	0	0	2	2	1		0 0	1	1	1	0	1
	wL wL	10 ges	20 20	3 2	0 0	0 0		2			0 0				1	0 3
Schwefeltrioxid SO ₃	fe tr	100 100	20 20				3	3	3	2	0	0	0	0	3	0
Schwefelwasserstoff H₂S	tr tr tr	100 100 100	20 100 >200	1 3 3	0 0 0	0 0 0	0	1	1	0	0	0	0	0	0	0 0 0
	tr tr	100	500	3	0	0	1	0	0		0	3	2	3	0	0
Seife	wL wL	1 1	20 75				0	0 0	0			0 0	1 1	0		0
	wL wL	10 100	20	0	0	0	0 0					3				0
Senf Silberbromid	wL	100 10	20 20 25	3	0L 2LS 0SL	0L 2LS 0SL	1			0	0	3	3	3	0	3
Silberchlorid Silbernitrat	wL wL	10 10	20	3	3LS 0	3LS 0	3	3	1	0	1	3	3	3	0	3
On Delinitat	wL wL	10 20	SP 20	3 3	0	0	3	Ü		Ü	1		J	J	0	
Spinnbad (Viscose-Bad)	Schm	100 <10	250 80	3	0	0					0					3
Stearinsäure		<10 100 100	80 20 80	3 1 3	0 0	3 0 0	0	0	0	0	0 0 0	1	2	1	0	3 0 3
Stickoxide	tr	100	130	3	0	0	3	1 3	3	0	0	0			0	0
Stickstoff	fe	100	20	0	0	0	0	0	0		0	0	0	0	0	0
		100 100 100	200 500 900	0 0 1	0	0 1	0 3 3					0			0	0
Sulfitlauge			20 80 140		0 2 3	0 0 0										
Teer			20 SP	0 2	0	0			0	0	0	0	1	0	0	1
Teeröl			20 SP	0	0	0						0				1 3
Terpentinöl		100 100	20 SP	0	0	0						0	1 1	0 0	0	0
Tetrachloräthan	tr tr fe	100 100	20 SP SP	0 0 1	0	0	0 0 1				0	0 1 3			0 1	0 3 3
Tetrachlorkohlenstoff	tr tr	100 100	20 75	0	OL OL	OL OL	0	0	0	0	0	0	0		0	0
	tr	100	SP	1	0L	0L	0				0	0	0		0	2

		T														
Medium		Konzentration %	Temperatur °C	Unlegierte Stähle	18/8-Stahl	18/8+Mo-Stahl	Nickel	Monel 400 2.4360	Inconel 600 2.4816	Incoloy 825 2.4858	Hastelloy C 2.4819	Kupfer	Tombak	Bronze	Titan	Aluminium
	fe		20	0	0L	0L	0	0				1	2	1	0	1
Thioglykolsäure	fe		SP 20	1	1L	1L 1	3	3				2	2	3	1	3
		100	SP 20	1	0L	1 0L		0								3
Tinte		100	SP	ı	1L	1L		0								3
Titansulfat		10 10	20 SP								1 1					
Toluol		100 100	20 SP	0	0	0 0		0 0				0	0 0	0 0		0
Treibstoffe, Benzin	tr	100	20 SP	0	0	0	0	0	0	0	0	0	0	0	0	0
	tr wh		20	0 0	0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 3
Benzol	wh tr		SP 20	0	0	0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	3
	tr		SP	0	0	0	0	0	0	0	0	0	0	0	0	0
Dieselöl Trichloräthylen	tr	100	20 20	0	0 0L	0 0L	0	0	0	0	0	0	0	0	0	0
	tr tr	100 100	70 SP		OL OL	0L 0L	0				0 0	1	1	1		3
	fe fe		20 SP	2	0L 1L	OL OL	0				0	1	2	1		3
Unterchlorige Säure	ie		20			0	U				U	'	2	<u>'</u>		3
Vaseline Vinylchlorid		100	SP 20	0	0	0					0			0		0
Wasser:			400		1	1					1					
H ₂ 0 dest. dest.			20 SP	1	0	0 0	0	0	0 0	0	0	0	0			0 1
Flusswasser			20	ı	0	0	0	U	0	0	0	U	U			Ó
Flusswasser Leitungswasser hart			SP ≤ SP	1	0	0	0					0				1
Leitungswasser weich			≤ SP ≤ SP	0 2	0 0	0 0						0 0	1	0		1 3
Leitungswasser alkal. Grubenwasser sauer			20	1	0	0	2					2	3			3
Mineralwasser Regenwasser fliess.			20 20	1 2	0	0	0					0				3 1
Regenwasser stehend Schwitzwasser			20 20	1	0	0										3
Meerwasser			20	1	0LS	0LS	0	0	0	0	0	0	0	0	0	1
Wasserdampf	fe		SP 100	2	2LS 0	1LS 0	0	0	0	0	0	0	0	0	0	3
774000744111,p1	fe		200 150	2	0	0	0	0 0	0 0	0	0 0	0	0	0 0	0	1 1
	tr tr		600	2	0	0	2									1
Wasserkondensat, rein plus CO₂			<200 <200	0 2	0	0	0	0 1	0	0	0 1	0	0 1	0 0	0	
plus O ₂ plus Cl			<200 <200	2	2LS	2LS	1	0			1	0 2		0		
plus NH₃			<200	2				0					3	2	0	
Wasserstoff		100 100	20 300	0 1	0	0 0					0 0	0	0			0
Wasserstoffsuperoxyd		100 alle	500 20	3	0	0	1	1	1	0	0	2	3		1	0
VVascorotonoaporoxya		30	20		0	0		·	·	Ü	0	1	2	1	·	
		30 85	70 <70		0	0 0					0 0	1	2	1		
Wein, weiss & rot		alle	SP 20	2	0	0	2		0	0	0	3	3	3	1	3
Weinessig	wL	5	SP 20	3	0	0	3		0	0	0	1	3 1	3 1		3
Weinsäure	wL	3	20		0	0					0				0	0
	wL wL	10 10	20 SP	1 3	0	0 0	1 2	1 2	1 2	0 0	0 1	0 3	2 3	0	0 0	2
	wL wL	25 25	20 SP		0 1	0 0		0 1	0 0		0 1				0 0	2
	wL	50	20		0	0			5		0				0	2
	wL wL	50 75	SP 20		1 0	0					1 0				0 0	3 2
	wL wL	75 alle	SP		2	2					1 1				0 0	3
Whisky		20		^	_						•					3
Xylol		20 SP	0 0	0 0	0											0
Yoghurt					0											3

Medium		Konzentration %	Temperatur °C	Unlegierte Stähle	18/8-Stahl	18/8+Mo-Stahl	Nickel	Monel 400 2.4360	Inconel 600 2.4816	Incoloy 825 2.4858	Hastelloy C 2.4819	Kupfer	Tombak	Bronze	Titan	Aluminium
Zement	fe		20						•	•						3
Zimtsäure		100	20													3
Zink	Schm	100	500	3	3	3	3	3								3
Zinkchlorid	wL wL	5 5	20 SP	3 3	3LS 3LS	2LS 2LS	1 1	1 2	1 2	0 0	0 1	2 2	3 3	2 2	0	3
Zinksiliconfluorid	wL wL wL	30 30 40 50	20 65 20 65								0 2 0 3					
Zinksulfat	wL wL wL wL	10 25 hg hg	20 SP 20 SP	2 3	0 0 0 0	0 0 0 0	1 1 1	1 1 1	1 1 1	0 0 0	0 1 1 1	1 2 1	3	1	0 0 0	1 3 1 3
Zinn	Schm Schm Schm Schm	100 100 100 100	300 400 500 600	2 3 3	0 1 3 3	0 1 3 3	3	3					3		0	3
Zinnchlorid			20 SP	3 3	1LS 3LS	1LS 3LS	3	3			0 1					3
Zitronensäure	wL	5 konz.	20 SP	2	1 3	0 2	2	2	0 2	0 1	0 0	0 2	0	0	0	3
Zucker	wL wL		20 SP	1 1	0	0			0 0	0 0	0 0	0 1	0	0 0	0	0
Zyanidbäder			25												0	